Software Pricing
Pricing Handbook

Change Request Number: 05-13
Date Received: 01/10/05
Title: Procurement Requests
Name: Tim Ashley

Routing Symbol: ATO-A

Phone: (202) 267-8554
Policy OR Guidance: Guidance- Pricing Handbook

Affected Section/Text Location: Pricing Handbook Section 19 (specifically 19.10 forward) Note: Only the affected sections are forwarded for review.

Summary of Change: To delete certain pricing applications which are no longer being supported by the Air Force. Specifically the applications are REVIC, SASET and Soft Estcost models.

Reason for Change: Desire for accuracy.

Development, Review, and/or Concurrence: This has been coordinated with the Air Force (Debbie Cann) who are the owners of these applications.

Target Audience: Contracting Officers/Pricing personnel
Potential Links within FAST for the Change: N/A
Attachments: Language of change
Briefing Planned: No

ASAG Responsibilities: None

19. SOFTWARE PRICING

Table of Contents

19.1
Introduction
19-1
19.1.1
SEI Requisites
19-2
19.1.2
Complexities of Software Cost Estimating
19-2
19.2
Software and the Life Cycle
19-5
19.2.1
Types of Software
19-5
19.2.2
Software Language
19-6
19.2.3
Software Development Cycle
19-7
19.2.4
Additional Modes of Software Development
19-11
19.3
Software Cost Estimating Process
19-19
19.3.1
Process for Software Estimation Activities
19-20
19.3.2
Software Development Standards
19-27
19.3.3
Benefits of SW Estimation Process
19-28
19.4
Estimating Software Size
19-28
19.4.1
Heuristic Approaches ("Rule of Thumb")
19-29
19.4.2
Metric Based Models
19-30
19.4.3
Reused Code
19-43
19.4.4
COTS Sizing
19-44
19.4.5
Summary of Metric Based Sizing Models
19-44
19.5
Software Cost Estimating Methodologies
19-45
19.5.1
Analogy or Comparative
19-46
19.5.2
Grass Roots, Engineering Estimate or Bottoms-up
19-47
19.5.3
Top-Down Method
19-48
19.5.4
Expert Judgment
19-48
19.5.5
Parametric Modeling or Algorithms
19-48
19.6
Life cycle Costs
19-50
19.6.1
CDRL Deliverables Estimates
19-50
19.6.2
Software Maintenance Estimates
19-50
19.7
Software Pricing Process
19-52
19.7.1
Software Price Analysis
19-53
19.7.2
Price Analysis Techniques
19-56
19.7.3
Price Analysis Tools
19-57
19.7.4
Software Cost Analysis
19-59
19.7.5
Considerations for Software Cost Analysis
19-60
19.7.6
Cost Analysis of a Parametric Estimate
19-65
19.7.7
Rules Of Thumb Use in Cost Analysis
19-67
19.7.8
Parametric Cost Analysis Example
19-68
19.7.9
COTS Special Pricing Considerations
19-69
19.7.10
Software Pricing Summary
19-69
19.8
Model Selection
19-70
19.8.1
Step 1: Determine Needs
19-70
19.8.2
Step 2: Select Candidate Model
19-73
19.8.3
Step 3: Choose Appropriate Model
19-73
19.8.4
Step 4: Reevaluate Model Choice
19-74
19.8.5
Model Selection Summary
19-74
19.9
Intelligent Use of Models
19-75
19.9.1
Input Data
19-75
19.9.2
Model Accuracy
19-76
19.9.3
Model Calibration
19-77
19.10
Software Project Tracking And Measurement
19-78
19.10.1
Cost and Schedule Tracking
19-79
19.10.2
Performance Measurement Indicators
19-80
19.10.3
Software Quality Metrics
19-83
19.10.4
Data Collection
19-85
19.10.5
Software Tracking and Measurement Summary
19-86
19.11
Summary
19-87

Appendix 19A. Acronyms
19A-1

Appendix 19B. Software Cost Estimation Terminology
19B-1

Appendix 19C. Sample Software Work Breakdown Structure
19C-1

Appendix 19D. Popular Parametric Software Cost Models
19D-1

Appendix 19E. Commercial Off-The-Shelf (COTS) Software
19E-1

Appendix 19F. Bibliography
19F-1

Software Pricing

Introduction

Software is a set of programs and accompanying documentation that directs computers to perform desired functions. In simple terms, a software program is a set of instructions for a computer. Within the Federal Aviation Administration (FAA), for example, software controls air traffic control systems, drives simulators, directs surveillance systems, and controls accounting, inventory and Management Information Systems (MIS). Software is a critical component in virtually every current FAA system, and will grow in importance as future FAA systems are developed and fielded. Between 1982 and 2003, the FAA will spend $21 billion on software-intensive Air Traffic Control (ATC) information systems, according to the General Accounting Office (GAO) report, “Air Traffic Control: Improved Cost Information Needed to Make Billion Dollar Modernization Investment Decisions.” Barry Boehm, in his book, Software Engineering Economics, suggests software costs are contributing to an increasing proportion of overall system costs. The FAA recognizes the need for accurate software estimates as well as performance measurement of software development programs. Software pricing is based upon the same steps as software cost estimating. Therefore, the software cost estimating process and techniques will be described first in this chapter and then the software pricing process. Those familiar with software cost estimating can jump directly to section 19.7, Software Pricing Process. Note also that the subjects of software work breakdown structure (WBS), software cost models, and commercial-off-the-shelf (COTS) software are dealt with in detail in Appendices C, D and E, respectively.
A significant portion of this chapter is drawn from the following sources: United States Air Force (USAF) software primer, Space Systems Cost Analysis Group (SSCAG)
, Software Methodology Handbook (published in June 1995), United States Navy’s Naval Command, Control, Surveillance Center, RDT&E Division Software Engineering Process Office (NRaD), Software Size, Cost and Schedule Estimation Process manual, dated June 1996; the National Aeronautics and Space Administration (NASA) Parametric Cost Estimating Handbook, dated Fall 1995m and DoD’s Software Technology Support Center’s (STSC) Report on Project Management and Software Cost Estimation Technologies, dated April 1995. These documents will be referenced in this chapter as SSCAG Handbook, NRaD’s Manual, NASA’s Handbook and the STSC Report respectively. The DoD community has extensive experience in the research and development of sophisticated software estimating tools and techniques. Although some DoD specific information is included, the concepts discussed are applicable in the FAA environment.

SEI Requisites

This chapter also embodies the philosophy of the Software Engineering Institute (SEI) as published in their “Checklists and Criteria for Evaluating the Cost and Schedule Estimating Capabilities of Software Organizations.” SEI’s research has concluded that developing credible software estimates is a function of how thorough and disciplined an organization’s estimating processes are. Accordingly, SEI has developed six institutional process requisites that organizations in the business of building or acquiring software-intensive systems must possess if they are to consistently produce reliable cost estimates. The activities necessary to ensure that the SEI requisites are met span the software program life cycle and are discussed in this chapter. These requisites are listed below:

· A corporate memory, or historical database(s), for cataloging cost estimates, revisions, reasons for revisions, actuals, and other descriptive information, such as any constraints or trends that affect the project;

· Structured processes for estimating software size and the amount and complexity of existing software that can be reused;

· Cost models calibrated/tuned to reflect demonstrated accomplishments on similar past projects;

· Audit trails that record and explain the values used as cost model inputs;

· Processes for dealing with externally imposed cost or schedule constraints to ensure the integrity of the estimating process; and

· Data collection and feedback processes that foster capturing and correctly interpreting data from work performed.

Why Software Cost Estimating is Difficult

1.) Projects are frequently required to satisfy conflicting goals.

2.) Estimates are required before the product is well defined.

3.) Estimates are highly dependent upon software development processes.

4.) Software development processes are constantly changing.

Complexities of Software Cost Estimating

According to Richard D. Stutzke in his article “Software Estimating Technology: A Survey” in STSC’s Crosstalk magazine, the software cost estimation process is difficult for several reasons. The first problem is that projects often must satisfy conflicting goals. Projects to develop or maintain software must provide specified functionality within specified performance criteria, within a specified cost and schedule, and with some desired level of quality (absence of defects). Software engineering processes can be chosen to meet any one of these project goals. Usually, however, more than one goal must be satisfied by a particular project. These multiple constraints complicate the estimation process.

The second problem is that estimates are required before the product is well defined. Software functionality is difficult to define, especially in the early stages of a project. The basis for the first good cost estimate is usually not available for totally new systems until the top-level design has been defined. This level of design is only defined at the preliminary design review in many government contracts and sometimes not even then, which leads to undesirable consequences. This milestone is reached after about 20 percent of the total effort and 40 percent of the total duration have been expended by the project staff. At this point in a project, typical accuracies for the estimated effort and duration are within 25 percent of the final project actuals. In general, since more information becomes available, the accuracy of estimates increases as a project proceeds. To reduce costs, as well as to improve quality and reduce development times, some projects employ pre-defined "domain specific software architectures". The development costs for such projects can be estimated more accurately than for projects that build a totally new product since more information about the product is available earlier. In general, however, the estimator must apply considerable skill to estimate project cost and schedule early in a project.

More data are available for modifications of existing code than when the existing code was written, so more accurate estimates are possible for this kind of project compared to totally new development. A large portion of all software maintenance work is a response to changes in the original requirements or in the system's external environment (mission, interfaces to other systems etc.). Software processes must produce software that can be gracefully evolved at reasonable costs. The choice of the software architecture significantly influences modifiability and hence maintainability. New ways to estimate the costs of such projects continue to be developed.

Modification of code is closely tied to software reuse. Various cost estimation models have been developed to qualify the economic costs of building and using reusable components. For example, Richard Selby analyzed costs at NASA's Software Engineering Laboratory and found that there is a large increase in programmer effort as soon as a programmer has to "look inside" the component.
 The cost to reuse a component depends on its suitability for the intended application, its structure, and other factors. The cost to reuse software compared to the cost to develop new software is a function of the amount of existing code that must be modified to install the code in a new system. A model developed using data from Richard Selby, Gerlich Rainer, Ulrich Denskat and Barry Boehm, indicates several important aspects of reused software costs.
 First, the cost is not zero even if no code is modified. Second, the costs increase faster than linearly at first. Third, the cost to modify all of the existing code is more expensive than to develop the code from scratch. (Effort is wasted to understand, then discard the existing code before the new code is written. This effort is never expended if the decision is made to develop totally new code from the start.) For the worst case, the economic break-even point occurs when only 20 percent of the code is modified; reuse is not cost effective above the break-even point. Such nonlinear behavior was not handled in previous cost models.

A third complication arises because the nature of software building is changing. New development processes emerge and new ways are needed to estimate the costs and schedules for the new processes. These processes endeavor to provide higher quality software (i.e., fewer defects), produce more modular and maintainable software, and deliver software (products and prototypes) to the end user faster. To meet these and the other objectives (stated previously), developers use combinations of pre-built code components and labor-saving tools. For example, many programming tasks are being put into the hands of the users by providing macro definition capabilities in many products. These capabilities allow users to define sequences of frequently used commands. A slightly more sophisticated approach is to allow domain experts to construct applications using special tools such as fourth-generation languages and application composition tools. Larger systems intended for specialized (one of a kind) applications are often built using commercial-off-the-shelf (COTS) products to provide functionality in areas that are understood well enough to be standardized. Examples are graphical user interfaces and relational database management systems. The trend toward object oriented languages supports this by making it easier to develop "plug compatible" components. Thus, reuse of code becomes an increasingly large factor in cost estimation, and a good understanding of the cost factors associated with software reuse becomes even more important.

Lastly, R. Selby is one of the authors that advocate of "measurement driven development processes" wherein process activities are adapted during the course of a project based on measurements of process performance. Planning and costing such processes prior to the start of the project is impossible.

The pricing process, terms and principles are described in the other chapters of this handbook. Since software pricing is dependent upon an understanding of the software cost estimation process, this chapter will discuss the issue of software cost estimation. First, software itself is explained so that the reader may fully understand what costs are being estimated. Next, the software life cycle is described, which includes the software development and software support phases. The specifics of the software cost estimating process follow, which will contain sections on the software work breakdown structure, software sizing, and estimating methodologies. Following the discussion of cost estimating will be a discussion of the software price analysis and cost analysis process. Finally, a discussion of parametric cost models and project tracking and metrics is included.

Software and the Life Cycle

Computers are dominating every aspect of modern lifestyles. Computers range in size and complexity from large mainframe computers used in major companies to the small personal computers which have become household items. Microcomputers are now being used in such commonplace consumer goods as automobile engines, televisions, and microwave ovens. To function, however, computers must be programmed using a language they can interpret. This computer language consists of electronic signals represented by the binary numbers “1” and “0”. Groups of these binary numbers are interpreted by a computer as data or as instructions to be acted upon. Sets of related instructions form computer programs, which constitute a basic element in the concept of software. Computer software may be defined as “computer programs, procedures, rules, and possibly associated documentation and data pertaining to the operation of a computer system,” per IEEE-STD-729, “IEEE Standard Glossary of Software Engineering Terms.”

Types of Software

The three basic types of software, all of which are procured by the FAA, are listed in Table 19-1. Most estimators are familiar with all three types of software because all are used in personal computers. MS-DOS (Microsoft Disk Operating System), for example, is a trade name for the operating system for IBM and IBM compatible personal computers. Listing a directory of user files is an example of a utility software function. Lotus 1-2-3 and Microsoft Excel are examples of application software. The software systems procured by the FAA are usually complex combinations of all three types of software.

Table 19-1. Types of Software
	Type of Software
	Function

	System software, also known as the operating system
	A collection of programs that manages all the concurrent tasks being performed by a computer, including the execution of application software programs.

	Utility software
	A set of programs that perform routine tasks, such as listing or compressing data, copying files etc.

	Application software
	Software that performs specialized functions like controlling air traffic systems and MIS functions mentioned above, or other useful work not related directly to the operation of the computer itself.

Software Language

Machine language, sometimes referred to as object or machine instructions, is the actual binary instructions that a computer will execute. Assembler code usually corresponds to machine instructions on an equal basis, i.e. one assembler line of code usually generates one machine instruction. Although assembler code is easier to write than machine code, most programmers find it relatively cumbersome. Next is a high-order language (HOL) instruction, or line of code. High level languages translate human instructions into machine

language. These languages are a number of levels (at a high level) away from the actual bit manipulation. Popular HOLs currently in use include BASIC, JOVIAL, C++, JAVA and Ada. Compared to assembler language, HOLs have the advantages of being much easier to read and write, but do not always make optimal use of a computer's capacity. An instruction written in assembler or HOL is often referred to as a source line of code (SLOC), to differentiate it from a machine instruction. This term will become important in the subsequent discussions on software sizing and software cost models.

Although most large programs today are written in assembler language or HOL, there is a growing trend toward programs that even more closely resemble the spoken language. Programs for spreadsheets, word processors, and similar applications are often written in a very high-order language (VHOL). VHOLs allow a person with little or no programming background to interact with a computer. There are programs that enable a computer to accept vocal instructions directly. Scientists in the field of cybernetics postulate that in the future computers will have the capability to accept thought commands as inputs.

Software Development Cycle

Regardless of how software is programmed, it must proceed through certain steps, or phases, of development. This section defines the basic software development cycle. Major phases and software development activities are defined, as well as key milestones for the measurement of progress.

An example of a popular software development process is the eight-phase process used in developing software for most Department of Defense (DoD) weapon systems, as described in DoD-Standard 2167A, “Defense System Software Development.” This process, when done sequentially, is based on the waterfall model of software development, as described by Barry Boehm. Per NASA’s Handbook, the process depicted by the model involves development through specific, sequential stages. There are specific objectives to be accomplished in each phase; each activity must be deemed successful for work to proceed to the subsequent phase. The process is usually considered non-iterative. Each phase requires the delivery of particular documentation products (Contract Data Requirements List (CDRL) Items). Many of the phases require successful completion of a government review process. Critics of the “Waterfall” Model, in fact, find that the model is geared to recognize documents as a measure of progress rather than actual results.

The eight major activities described in DoD-STD 2167A are shown Figure 19-1 as a schematic overview of the Waterfall Model, representing concurrent hardware and software development. The maintenance phase was added to the end of the software development phases to represent the operation and support needed for the complete software life cycle.

Figure 19-1. Software Waterfall Model Development Phases

Error! Not a valid link.
It is evident from Figure 19-1 that software development comprises much more than writing code. In fact, according to William G. Cheadle in his article entitled “DoD-STD-2167 Impacts on Software Development,” writing code accounts for only about twenty percent of the entire software development process and phases 2 through 4 can account for 60% of the entire SW development effort.

An understanding of the above process requires a comprehension of the software hierarchy and terminology used. A system is partitioned into various subsystems, which are further partitioned into computer software configuration items (CSCIs) and hardware configuration items (HWCIs). A CSCI is a program, or group of programs which satisfies a common end-use function and is managed separately. Since CSCIs may contain over 100,000 lines of code, they are further partitioned into computer software components (CSCs) and computer software units (CSUs). CSUs are the lowest-level software entities and usually contain between 100 and 200 lines of code.

Systems Concept/System Requirements Analysis

The initial System Requirements Analysis activities involve exploring and defining concepts to satisfy a valid requirement using hardware, software, and personnel resources. The system operational requirements, as defined by the Government, are translated into preliminary specifications. During system design activities, the contractor may investigate several alternative approaches that would satisfy Government requirements, but generally selects and documents one specific system architecture to be used. The system may be designed to use one central computer, or a number of computers distributed throughout the system could share the processing tasks. The contractor will identify the computer resources he will require and the database(s) that will be used or that will need to be developed.

The Software Development Plan (SDP) is one of the deliverable products that result from the analysis and design activities. This document presents an integrated plan for managing the development effort. It usually summarizes the overall software structure and basic functions, as well as the planned approach to project management. It can be a useful document for obtaining an overview of the effort to be estimated.

The Systems Requirements Review (SRR) is held at the conclusion of requirements definition activities. The objective of this review is to determine how adequately the contractor has identified and defined overall system requirements.

Software Requirements Analysis

The primary objective of this phase is to define requirements for each CSCI as completely as possible in order to eliminate uncertainty at the beginning of the design phase. The customer's requirements are assigned to CSCIs, and the pattern of interaction (interface requirements) among the various components is specified. The requirements that each CSCI must meet during testing are also specified. System analysts assess the information flow with the software; that is, how data move and are transformed during its input, process, and output. They also look at the structure of data, or how various elements of data are logically related. This involves understanding how data will be organized, accessed, modified, and processed.

The Software Requirements Specification (SRS) is the primary deliverable product developed as a result of software requirements analysis. An SRS will be developed for each CSCI. This specification will describe the goals and objectives of the software, and the problems the software is designed to solve. It will provide details of each function that the software will perform, and what procedures it will use to perform them. It should provide specific criteria to be used to validate the software, that is, specify the criteria to be used to determine whether or not the software is “successful”.

The Software Specification Review (SSR) marks the end of this phase. This review evaluates the SRS for each CSCI, and the Interface Requirements Specification (IRS). The objective of this review is to determine if the contractor is ready to proceed with preliminary design.

Preliminary and Detailed Design

During software design, the objective is to develop functionality based on the requirements determined above, so that the writing of code will easily follow. Software design is divided into two phases, Preliminary and Detailed design; each CSCI is defined in successively greater detail. The model will be quite general at first, but as design proceeds, the procedural detail will become more and more similar to source code.

In the Preliminary Design Phase, the contractor develops an overall design approach including mathematical models and determines how control of various functions and data will flow through the software. The overall structure or architecture for each CSCI is determined. Each CSCI will be divided into Computer Software Components (CSCs). The general processing that will be performed by each CSC is determined, and test plans and requirements for each CSC are developed. Preliminary Design Review (PDR) is held at the end of this phase, and is intended to determine if the contractor is ready to proceed with Detailed Design. Separate PDR reviews are sometimes held for each CSC.

In the Detailed Design Phase, each CSCI is further subdivided by splitting the CSCs into Computer Software Units (CSUs). Ideally, each CSU should perform only a single function, and should consist of approximately 100 SLOC. Data requirements, algorithms, interfaces, and required testing are all defined down to this unit level. The end result of detailed design is a “code to” document, a complete modular lower level design for each CSCI. This detailed design is a “blueprint” from which to write code. Critical Design Review (CDR) is held at the end of the detailed design phase. The design phase ends with successful completion of the System Design Review (SDR). This review is held to evaluate how well the contractor has allocated technical requirements to the hardware and software.

Coding and Computer Software Unit (CSU) Testing

During Coding and Unit Test, the actual programming of deliverable code occurs. Pseudocode is converted into formal Order Language Statements or Source Code. This Source Code is then compiled (translated into machine readable form) and each unit is tested as planned in previous phases. This code and unit test activity is the effort most people associate with software development. In terms of proportion of schedule and cost, however, programming probably represents only 17 to 25 percent of the overall effort. Large, complex software projects do tend to experience manpower peaks in this phase, as the activity lends itself to subdivision and parallel effort. On large projects, the components can be subdivided, with many people working on small subtasks simultaneously.

Computer Software Component (CSC) Integration and Testing

The previous phases define requirements and allocate those requirements to successively lower level components of the overall software system. Once the coding or programming of the lower level units is complete, this process reverses itself, and effort is focused on integrating and testing successively the higher levels of the system. The software development contractor now has to check the algorithms and logic for each CSC, and integrate the functions that were specified for each CSC in its respective requirements document.

Integration Testing

CSCIs are tested during the next phase, and the tested software is then integrated with the hardware it controls. This integration process and testing of the integrated system is conducted by the contractor. This phase concludes with the Test Readiness Review (TRR).

System Testing

The integrated system will have to undergo System Testing. The objective of testing in this phase is to determine if the system meets the customer’s requirements and user needs. If the system as a whole meets all the customer's requirements as defined in the system specifications, then it is ready to be delivered. The final reviews in the process are the Functional and Physical Configuration Audits (FCA/PCA). The final test in the development phase is the Operational Test and Evaluation, which is conducted by the organizations that are to use the system in order to determine how well the fielded system will actually work.

Software Development Cycle Summary

During the first phase, Systems Concept/System Requirements Analysis, system level requirements are partitioned to CSCI and HWCI-level requirements. Each CSCI now follows its own development cycle following the phases shown in Figure 19-1 as CSCI-level activities. During the Software Requirements Analysis phase, the specific requirements of a CSCI are defined in detail. During the next two phases, Preliminary Design and Detailed Design, the requirements are refined to the CSC and CSU levels respectively. Ideally, the software is now completely designed and is ready to code. The last three phases involve writing source code (e.g., FORTRAN language statements) for each CSU and testing the CSU; testing aggregates of CSUs which form CSCs, and testing the overall CSCI to insure the CSCI requirements are met. After CSCIs are tested, the last phase, System Test, determines whether the aggregate of hardware and software meets system requirements. Once the system becomes operational at a site, development is essentially complete and the program enters the maintenance part of the life cycle.

Per the Computer Science Telecommunications Program course material website at the University of Missouri, Kansas City, the term waterfall is an analogy to the fact that the development process is allowed to move in a forward direction only. When a software developer takes on a contract to build a software system using the waterfall model it usually agrees to provisions to deliver documents at the completion of each phase by a particular date. Therefore, the model has been termed a legalistic document driven approach. Obviously there are problems with the strict adherence to the waterfall model.

The development phases shown in Figure 19-1 do not always occur sequentially. Many modern development practices, such as prototyping or incremental development, will result in a different order of activities. (Also, these phases may be modified or combined in some instances. For example, in Military Standard 498, “Software Development and Documentation” (which replaced DoD-STD-2167A), the preliminary and detailed design phases have been combined into a single “software design” phase, and the requirement to have CSCs has been eliminated.

Additional Modes of Software Development

According to Boehm, a new generation of software processes and products are changing the way organizations develop software. The eight-phase process described above is tailored to the standard waterfall, full scale development method that is most commonly used when discussing project planning and management concepts. However, other types of development that include COTS integration, prototyping, evolutionary acquisition, incremental development, spiral development, and technology insertion, plus reuse-driven software procurement approaches; and software process maturity initiatives lead to significant benefits in terms of improved software quality and reduced software cost, risk, and cycle time. The detailed nuances of how development proceeds under each of these modes of development is beyond the scope of this document. However, some general considerations that should be made for the estimation process under each of these modes is discussed below since the different software cost estimating models/tools described in Appendix 19D refer to these processes.

COTS Integration

According to Richard Stutzke’s paper “Cost Factors for COTS Integration” presented at the Tenth International COCOMO User’s Conference, Software developers are using increasing amounts of commercial-off-the-shelf (COTS) software products to construct new systems. These COTS products may be either components or standalone packages. They are considered to be ready to use and have been documented at some level of detail. They are also supposedly well tested, making them more reliable.

Software developers choose to use COTS products to decrease development costs, schedules and technical risks. Unfortunately, these goals are not achieved in many cases due to an incomplete understanding of all the factors involved. These factors include features provided and various associated costs, including license fees. For a more in-depth discussion of the many considerations peculiar to COTS software integration, cost estimating, and pricing, refer to Appendix 19E of this chapter.
The model pictured in Figure 19-2 is called the five-panel model and is extended from SEI’s Special Report [SEI-97-SR-019] titled “Workshop on COTS-Based Systems.” The five panels represent various activities that address different aspects of turning a set of COTS components into a COTS-based system.

Figure 19-2. COTS Five Panel Model

Error! Not a valid link.
The COTS Market panel deals with the market survey and analysis activities that determine what are the viable candidates for a particular component, from both a business and a technical perspective.

The Qualify panel activities investigate the hidden interfaces and other characteristics and features of the candidate products. The most difficult problem in this phase is to determine the characteristics of the available COTS products so that a product that best meets the requirements may be selected. The result of this discovery process is to reveal the necessary information to make a selection and identify possible sources of conflict and overlap, so that the component can be effectively assembled and evolved. Per the March 1998 STSC Crosstalk article on COTS, “Experience shows that the selection process for one major product can require three to six months of calendar time, multiple engineers and programmers, access to sophisticated suites of hardware and software environments, and will likely entail the purchase of vendor-provided training classes.” Per Stutzke, “this phase concludes with the purchase of the selected products which can be accomplished using a wide variety of licensing schemes. The licensing scheme can affect the overall cost of the system. The biggest difficulty in dealing with licenses is there is no standard terminology in use by the various vendors, for example “annual” and “perpetual” are used by different vendors to mean the same thing.”

The Adapt panel activities amend the selected components to address potential sources of conflict. The figure implies a kind of component “wrapping,” but other approaches are possible (e.g., mediators and translators). According to the Crosstalk article, since COTS software does not require coding but does require integration with other components, it starts the life cycle as a partially developed component. The design, construction, and integration and test development stages must be recast to accommodate early COTS software integration and testing as well as to develop “glue” code: interface software, configuration files, scripts, utilities, and data files required to make the COTS software deliver its intended functionality. The proper development and testing of the glue code to make a COTS package work may not be a trivial undertaking. For more complex COTS software, the development of glue code might need to be treated in the same manner as the development of a traditional custom-coded software module.

The Assemble panel shows the integration of the adapted components into an architectural infrastructure. This infrastructure will support component assembly and coordination, and differentiates architectural assembly from ad hoc “glue”. Referring again to the Crosstalk article, waiting until late in the development process to test and integrate COTS products, particularly those that are complex, will not give adequate time to master all their intricacies and complexities. COTS product testing and integration activities must be interwoven into more of the development process stages.

The Update panel acknowledges that new versions of components will replace older versions; in some cases, components may be replaced by different components with similar behavior and interfaces. These replacement activities may require that wrappers be rewritten, and they suggest the advantage of well-defined component interfaces that reduce the extensive testing otherwise needed to ensure that the operation of unchanged components is not adversely affected.

Rapid Prototyping Development

The Computer Science Telecommunications Program course material website at the University of Missouri, Kansas City describes prototyping as developing an initial “model”, providing the prototype to the intended users, gathering feedback from the users, and including any revisions or refinements. If this process continues until the required system is developed, then the process would be considered evolutionary development. However, when the objective of the prototype is to determine or validate system requirements, then the process illustrated in Figure 19-3 (extended from James E. Tomayko’s course material website at Carnegie Mellon University) applies and is sometimes referred to as throw-away prototyping.

Figure 19-3. Rapid Prototyping Development Model

Error! Not a valid link.
NRaD’s Manual refers to prototyping as a method to evaluate the feasibility of technical ideas and theories that has become increasingly popular and is a widely used development mode at various defense R&D centers. Developing a prototype is usually a distinct portion of the life cycle. Just as the prototype will provide insight into the design and implementation issues, the estimate and cost of producing the prototype will provide insight into the cost of the overall project. The University of Cincinnati, College of Business Administration course material website states that typically the prototype represents about 15% of the final project.

Developing a cost estimate for a Prototyping project should be accomplished in the same manner as for a full-scale development project. The primary cost savings resulting from prototyping is the lack of formal reviews and documentation required. Also, there is a minimum of systems engineering and formal testing involved.

Evolutionary Acquisition (EA)

Figure 19-4 (extended from the University of Illinois Department of Computer Science course material website) shows the basic elements of EA development.

Figure 19-4. Evolutionary Acquisition Model

Error! Not a valid link.
The Computer Science Telecommunications Program course material website at the University of Missouri, Kansas City states that one of the shortcomings of the Waterfall Model is its incapacity to analyze the crucial activity of risk analysis. The Evolutionary Acquisition Model is pretty similar in content to the Waterfall Model except it encourages prototyping. Per the NRaD Manual, EA is becoming the rule more than the exception in large-scale development efforts, especially when the detailed specification is difficult or impossible to create. The thesis of "build a little, test a little" is seen as a way to develop systems that better satisfy user requirements and more easily take advantage of technical advances. The underlying factor in EA is to field a well-defined core capability quickly in response to a validated requirement, while using a phased upgrade program to eventually enhance the system to provide the full system capability. This process is also referred to as evolutionary prototyping. Documentation and the software structure may suffer with this approach, especially if the prototypes are created rapidly. EA can be considered a risk reduction approach and effective prototyping can increase the software quality.

The process for estimating an EA project can be accomplished in the same manner as for a standard waterfall project. An EA project requires the same formality as any other method of development. Estimates should be developed for each phase or development cycle of an EA project just as they would be for a large Full Scale Development project. During each phase of an EA project, two separate estimates will be required, an estimate for the current phase and an estimate for the total project as it is understood and defined at that time.

Incremental Development

The NRaD Manual refers to the incremental development approach as a top down implementation of distinct functional elements of the product. The development of each increment is accomplished as a separate waterfall type of development as illustrated in Figure 19-5 (extended from James Tomayko’s course material website at Carnegie Mellon University). This strategy allows visibility into potential design, interface problems etc., early in the development cycle. It also provides the opportunity to incorporate user experience into the final product. The incremental development methodology differs from the evolutionary approach in that under the incremental strategy the end product is well-defined.

Figure 19-5. Incremental Development Model

Error! Not a valid link.
Estimates should be developed for the total project as well as for each of the increments. Each increment should be identified and sized. The estimates for each increment should be accomplished as for an individual waterfall development project. The estimate for the total project will have to show the overlapping of the increments. How the individual increments overlap may differ from project to project.

The establishment of size, cost, and schedule estimates for each increment will provide an overall estimate of the total project. As the first increments are completed, then the assumptions and estimates for the subsequent increments as well as for the total product can be revised to reflect a more accurate assessment.

Spiral Development

Barry Boehm created the spiral model in 1988 for software engineering because of the perceived inadequacies of the waterfall life cycle. The Computer Science Telecommunications Program course material website at the University of Missouri - Kansas City states that the spiral model encompasses features of the phased life cycle as well as the prototype life cycle. However, unlike those life cycles, the spiral model uses risk analysis as one of its elements. It also uses the waterfall model for each step so as to avoid any risks. It is a complex model that requires complicated diagrams (such as Figure 19-6) to be fully understood.

Figure 19-6. Spiral Development

Error! Not a valid link.

The radial dimension in the figure shows the cumulative cost of the accomplishment of the steps at that time. The angular dimension shows the progress made in the completion of each cycle of the spiral. Every cycle of the model represents the same sequence of steps in the completion of the software. Each cycle of the spiral begins with the identification of the objectives of that portion of the product, an alternative way of implementing this portion, and the constraints on the application of the alternatives.

The first step is used to evaluate the risks involved with the objectives and constraints. The next step is determined by the remaining risks. If a detailed prototype is useful enough for future product evolution with low risks, then the next steps would be the series of evolutionary prototypes going toward the right in the figure. However, if previous prototyping has already resolved all of the performance risks, then the next step uses the waterfall approach.

The primary advantage of the spiral model is that it has a wide range of options to accommodate the good features of other life cycle models. It becomes equivalent to another life cycle model in appropriate situations. Also the risk-avoidance approach keeps it from having additional difficulties. The spiral model focuses its early attention on the option of reusing existing software. It prepares for life cycle evolution, growth, and changes of the software product. The spiral model has some difficulties that need to be resolved before it can be a universally applied life cycle. These difficulties include matching to contract software, relying on risk assessment expertise, and the need for more detailed steps. The risk-driven model is dependent on the developers' ability to identify project risk and therefore depends on the risk assessment skills of the developer. It is still fairly new compared to other models, so it has not been used significantly and the problems associated with it haven't been widely tested and solved.

The spiral model is best used for the development of large-scale systems. It can be used for reliable and mission critical systems. The risk-driven nature of the spiral model is more adaptable to the plethora of software project situations than the document-driven life cycles (i.e., the waterfall model) or the primarily code-driven life cycles (i.e., the evolutionary model). The spiral model would be inappropriate for use in small projects.

Technology Insertion

Referring to the NRaD Manual, Technology Insertion is the enhancement of an existing system through the introduction of new technology. The new technology for software systems is often the result of improved hardware. The new hardware is usually characterized by higher throughput, or increased memory size, and will often have an improved operating system.

New hardware often provides the opportunity to also introduce a new version of the application software. The new version is usually characterized by improved functionality. The new software version is typically comprised of a significant amount of new code and modified existing code.

Technology Insertion projects are usually conducted the same as new development projects and thus will follow the generic estimation process contained herein. The primary difference, however, is the amount of existing software that is planned for reuse. The software developers are often optimistic regarding the amount of existing code that can be used. Estimators should be conservative in regards to reused code estimates.

The developers may state that the target code to be reused will only need a 10-20% modification when in reality some of it may require a complete rewrite. One of the most common reasons for this development of new code is to take advantage of operating system and hardware enhancements. Another reason is that programmers who are new to the project may recode in accordance with more modern software engineering practices.

The uncertainty in the amount of effort for the reused code should be reflected in the cost/schedule risk analysis. A range of estimates should be generated that reflects the optimistic viewpoint and the conservative viewpoint. A detailed analysis of the existing code should be performed as early in the project as possible to ascertain the degree of rework actually required. An accurate estimate of the reuse effort will not be possible until the existing code is actually inspected by the programmer/analysts.

Software Maintenance

After software has been developed, it must be maintained or supported. Software maintenance involves much more than correcting errors not discovered during testing. It also involves adding additional capabilities, deleting obsolete capabilities, modifying the software to address a change in the environment or to better interface with the host computer, and other activities that are necessary after software is developed. Therefore, software maintenance may also be called “software redevelopment” since the activities are reiterations of all or some of the software development phases shown in Figure 19-1.

Software maintenance is defined as the process of modifying existing operational software while leaving its primary functions intact. Software updates result in a changed functional specification for the product but do not include major recoding of the software that substantially change the functionality of the available software. Major recoding is normally best treated as a separate, follow-on project.

According to Robert L. Glass and Ronald A. Noiseux in their book Software Management Guidebook, almost all software maintenance can be partitioned into three categories: corrective, adaptive, and perfective. Table 19-2 briefly explains each category and gives the relative percent of maintenance effort expended for each category. Note that corrective maintenance, the closest analogy to traditional “maintenance”, accounts for only about 17% of the overall maintenance effort.

Table 19-2. Software Maintenance

	Category
	Definition
	Percentage

	Corrective
	Corrects error
	17%

	Adaptive
	Accommodates environmental changes
	18%

	Perfective
	Makes enhancements
	60%

	Other

	 5%

Software maintenance is not inexpensive. According to L. H. Putnam and A. Fitzsimmons in their article “Estimating Software Costs” and other sources, software maintenance costs often exceed the total cost of software development. Consequently, a discussion of software cost estimation would be incomplete without considering maintenance costs (see section 19.6.2). Therefore, in the subsequent discussions of commercially available software cost models, an assessment of their ability to estimate software maintenance costs is included.

Software Cost Estimating Process

The overall process of developing a cost estimate for software is no different from the process for estimating any other element of cost. There are, however, aspects of the process that are peculiar to software estimating. Some of the unique aspects of software estimating are driven by the nature of software as a product. Many of the problems that plague the software development effort itself are responsible for the difficulty encountered in estimating that effort.

One of the first steps in any estimate is to understand and define the system to be estimated. Software, however, is intangible, invisible, and intractable. It is inherently more difficult to understand and estimate a product or process that cannot be seen and touched. Software grows and changes as it is written. Also, when hardware design has been inadequate, or when hardware fails to perform as expected, the “solution” is often attempted through changes to the software. This change may occur late in the development process and sometimes results in an unanticipated software “build.” In this type of situation, where the product is highly ambiguous, it is more important than ever to develop graphical representations of the final software product. This could be as simple as creating a product tree line drawing to represent the software development effort, or developing a software work breakdown structure (WBS), which is discussed in section 19.3.1 and 19.3.3. Other problems are created by the metrics used to size software and the nature of the software estimating methodologies themselves. These topics are discussed in sections 19.4 and 19.5, respectively.

Per NRaD’s Manual, projects should produce and document project plans, which include estimates of product size, resources, staffing levels, schedules, and key milestones. Historically, the costs and schedules for most software projects have been greatly underestimated. There are many reasons for this: costs and schedules are often pre-determined by an outside source; a real in-depth analysis of the software development process was not taken into consideration or in many cases not fully understood; and there is a general lack of acceptance of the concept that developing software is an expensive endeavor.

The software estimation process in the following sections describes the steps required for establishing initial software Life Cycle Cost (LCC) estimates and then tracking and refining those estimates throughout the life of the project. Establishment of this process early in the life cycle will result in greater accuracy and credibility of estimates and a clearer understanding of the factors that influence software development costs. This process also provides methods for project personnel to identify and monitor cost and schedule risk factors.

Following the sections on software cost estimating will be a discussion of the software price and cost analysis process. Software pricing is dependent upon most of the same input parameters that are required to perform a valid cost estimate. The objective of price analysis is to determine if the cost estimate contained in the contractor’s proposal is fair and reasonable. The objective of cost analysis is to analyze the cost elements contained in the contractor’s proposal to form an opinion on the degree to which individual cost elements and associated proposed profit or fee represent what the work should cost, given reasonable economy and efficiency. It involves a review of the judgment factors used in projecting the estimated costs. Therefore an understanding of the software cost estimating process is necessary for performing software pricing.

Process for Software Estimation Activities

Referring to NRaD’s Manual, software estimation is a continual process that should be used throughout the life cycle of a project. The process activity for developing the cost estimate is shown before the schedule estimate in Figure 19-7 because this is the sequence often used by the cost models. However, a development schedule is often mandated before the scope of the effort is clearly understood. The early establishment of a WBS helps to divide the effort into distinct work segments that can be scheduled and prioritized. A sample detailed software WBS is provided in Appendix 19C.

Figure 19-7. Software Cost Estimation Process

Error! Not a valid link.
The following subsections provide an overview of the steps used to develop a thorough software project estimate. Detailed explanations of estimation requirements for each phase of a project are in subsequent sections. Detailed explanations of specific estimation methods and automated tools are contained in section 19.5 and Appendix 19D respectively.

STSC’s Report states that software estimation should be approached as a major process; it should be well planned, reviewed often, and continually updated. The basic steps required to accomplish software estimation are:

Step 1: Identify project objectives and requirements

The key point that needs to be made here is that project objectives and requirements must be clearly and precisely identified to develop good estimates of effort and costs early in the project's life cycle. The objectives of the project define what the end product is, what the end product's intermediate steps are, and when and for whom the project will be accomplished. The objectives also help define how and by whom the project will be carried out. Constraints are restrictions that affect the completion of project objectives. Constraints may arise from several factors. The start date or completion of the project may impose constraints. Other constraints are imposed by the application of specific resources and their associated availability. Constraints can also be policies and procedures that require justifications or explanations of implementation actions.

NRaD’s Manual states that defining requirements early on in a project can be a very difficult task. However, without knowing what the requirements are, it is impossible to accurately estimate a project's cost and schedule. If all of the requirements are not known, then the estimate should be based on the known requirements and make sure everyone understands that the estimate is based on only those known requirements. If using an incremental or evolutionary development strategy, then base the estimate on the requirements that have been defined for that increment.

Step 2. Plan the activities

The Work Breakdown Structure (WBS) is created in this step and is used in the software estimation steps that follow. WBS is an excellent tool for visualizing the software product. The WBS need not be complex, nor does it need to be highly detailed. The hardware WBS can be a useful tool in developing the initial WBS for software. There is usually a software CSCI or similar module associated with each HWCI. As the program evolves, the initial or draft WBS should include all software associated with the program regardless of whether it is developed, furnished, or purchased. If furnished or purchased software were omitted, it would not be possible to capture the cost of integrating pre-existing or purchased software with the development software. Appendix 19C contains a sample software WBS.

During each of the phases of software development, numerous activities will be performed in disciplines such as software development, software project management, software configuration management, and software quality assurance. As discussed by Boehm and by Donald J. Reifer in his SoftCost-R User's Manual, the activities performed for each discipline during each phase can be organized into an activity WBS for each CSCI. This WBS can be used with the product WBS as a basis for management reporting and tracking for a CSCI. A manager must understand that a software WBS contains different activities than a traditional hardware WBS (e.g., coding versus fabrication).

The WBS should depict only major software functions, and major subdivisions. It should not attempt to relate the software to the hardware it controls. Each of the major software functional units can be modeled as a CSCI. Lower level WBS elements can be modeled as a component. Once the WBS is established, the next step is to determine the magnitude of the software development/support effort and decide on which estimating technique should be used for deriving the estimate.

Step 3. Estimate product size

STSC’s REPORT describes how using the requirements and WBS, the product size can be estimated by estimating the sizes of the components identified in the WBS. Estimating product size is the basis of software cost estimation. Size is considered by software project managers to be a major technical performance or productivity indicator allowing them to track a project during development. Estimating product size is not simple to do; typically, it is very dependent on the experience of the persons doing the estimating. Since estimating size is so important to the overall cost estimate, section 19.4 describes in detail the various methods to estimate product size.

Step 4. Estimate Cost And Effort

Using size estimates as input, estimates of cost and effort are prepared. Many methods can be used (see Section 19.5), and the use of more than one method is strongly recommended. It is in this step that software estimation tools should be used to assist with the estimates. Many of the available tools use models that have been developed over the years using historical data from hundreds, even thousands, of projects. One widely used model is the COnstructive COst MOdel (COCOMO). For information on individual models see Appendix 19D.

In the NRaD Manual, the first consideration in estimating cost and effort (man-hours or man-months) is to choose the estimation method. If a parametric cost model (see Appendix 19D) is being used, then the environmental parameters for the project must be determined and entered into the model.

Examples of parameters are program complexity, programming language, requirements volatility, analyst capability, and execution time constraint. The estimate should include all labor activities charged directly to the task. These activities normally include:

· Engineering labor charges for System/Software Requirements Analysis, Design, Code, Test, and Integration.

· Documentation effort

· Configuration Management

· Software Quality Assurance

· Management effort charged directly to the task

Step 5. Estimate schedule

Using estimates of cost and effort, a tentative, projected schedule is developed. Continuing with the NRaD Manual, Schedule Estimates can be derived either manually or by using automated estimation models. A combination of both manual and automated methods is recommended. Manual methods should be based primarily on past experience. One or more software engineers with experience with the specific application under development should develop a schedule estimate as follows:

· The WBS should be expanded to delineate the order in which functional elements will be developed. The order of development will define which functions can be developed in parallel as well as dependencies that drive the schedule.

· A development schedule should be derived for each set of functions that can be developed independently, i.e., a schedule for each build of an incremental development.

· The schedule for each set of independent functions should be derived as the aggregate of the estimated time required for each major phase of the development: analysis, design, code & unit test, integration and test.

· The total project schedule should reflect the aggregate of the product development, including documentation and formal review requirements.

The steps outlined above are typical of manual estimates. Most of the available tools provide a standardized schedule estimate based on waterfall milestones shown in Figure 19-1. Automated tools allow the user to tailor the schedule in order to observe the impact on cost. However, most automated tools allow only a small amount of flexibility in shortening schedules. REVIC (REVised Intermediate COCOMO), for instance, allows the user to shorten the schedule by 25% from the nominally derived schedule.

Step 6. Risk Assessment

The STSC Report states that all known risks associated with a software development project should be defined and weighed, and impacts to the project costs should be determined. This information should always be included as part of the software estimation process. Poor software estimates generally result from four major risk areas, which are shown in Table 19-3.

Table 19-3. Risk Resulting from Poor Software Estimates
	Risk Area
	Factors Associated with Risk

	Size of the software project
	Software size estimates tend to be optimistic resulting in underestimation. Since size estimates are central to other project estimates, poor size estimates can cause numerous problems such as cost and schedule overruns.

	Development Environment and Process Stability
	An inadequate development environment or changes in the environment or processes on which estimates are based can result in cost and schedule overruns.

	Staff Skills
	Misalignment of skills to tasks can result in miscalculations of schedules and amount of effort required as well as poor estimates of project staffing requirements.

	Requirements Growth
	Unconstrained growth of requirements during the software development life cycle results in changing project goals that can lead to frustration, customer dissatisfaction, and ultimately, cost and schedule overruns.

Comparing and iterating the results from different estimation methods will also help identify risks. More than one software estimation method should be used and the results should be compared, since there is no one method that is clearly superior. The strengths and weaknesses of the different methods tend to complement each other. Significant differences in cost/schedule estimates should be iterated for two reasons:

· Similar components of a project may have widely varying estimates due to differences in the estimator’s personalities (pessimistic vs. optimistic), roles, and incentives. Iteration of the estimates helps to resolve these differences.

· A few components may dominate the SW costs, in which case, the estimates for those components are critical to the project’s success and therefore can be risk areas. Iteration can be used to scrutinize the critical estimates.

Once the potential risks are identified, risk factors should be recorded and tracked in the Software Development Folder (SDF) or Software Estimation File (SEF), the WBS and the Software Development Plan (SDP).

Step 7. Inspect/Approve

Referring to the NRaD Manual again, the purpose of this step is to improve the quality of the estimate and get upper management commitment. The objectives of the inspection and approval of the estimate are:

· Confirm the software architecture and functional WBS.

· Verify the methods used for deriving the size, schedule and cost estimates.

· Ensure that the assumptions and input data used to develop the estimates are correct.

· Ensure that the estimate is reasonable and accurate given the input data.

· Formally confirm and record the official estimates for the project.

This step is an ideal place to incorporate the Software Engineering Institute (SEI) software cost estimating requisites of audit trails and constraint processes. Audit trails record and explain the values used as cost model inputs. SEI suggests processes for dealing with externally imposed cost or schedule constraints that help ensure the integrity of the estimating process. Per the GAO Report on Air Traffic Control in January 1997, SEI, along with other experts in systems and software engineering advocate qualifying early project estimates by disclosing the level of uncertainty associated with them, and making the estimate more precise as the project is completed and the uncertainties eliminated. The GAO recommended to the FAA to disclose the inherent uncertainty and range of imprecision in all Air Traffic Control project’s official cost estimates presented to executive oversight agencies or the Congress.

Software estimators, the project manager, and quality assurance or upper management should sign the estimate after the inspection is complete and all defects have been resolved. Inspection and approval activities can be as formal or informal as you want them to be. What is important is that the estimates are reviewed independently. Estimates can be improved simply by having the appropriate personnel participate in the validation process.

Step 8. Track Estimates

The NRaD Manual recommends tracking estimates over time in order to develop a historical file of your estimates, to compare the current estimate to previous estimates, to resolve any discrepancies with previous estimates and to document the tracking data. Comparing planned versus actual estimates over time allows the estimators to see how well they are estimating and also to see how their project is changing over time. Also, tracking allows the estimator to develop a historical database of estimates. Estimators can use this historical database to calibrate cost models or to compare past estimates to future projects.

This step allows the accomplishment of the SEI requisites of having a corporate memory or historical database(s), for cataloging cost estimates, revisions, reasons for revisions, actuals, and other descriptive information. Examples of other descriptive information includes: trends that affect the project; having the ability to calibrate/tune cost models to reflect demonstrated accomplishments on similar past projects; and data collection and feedback processes that foster capturing and correctly interpreting data from work performed.

Step 9. Process Measurement and Improvement

The NRaD Manual suggests that metrics should be collected during each step of the software estimation process to improve the process. Two forms of process measurement are recommended. The first, called process effectiveness metrics, is used to track the effects of the process on the project. The second set of metrics, called process cost metrics, is used to provide management with insight into the cost of implementing and performing this process. The long- term benefit of collecting these metrics is to determine a correlation between the overall accuracy of the estimates and the cost of developing the estimates. This information is another input to the resource requirements of a project and should be identified as such.

The collection of these metrics should begin as soon as the process is implemented and will continue throughout the development cycle. Collection of the metrics will continue through the final phases of development even though estimation activity declines in those phases. These metrics are described below.

· Process Effectiveness Metrics. The purpose of the Process Effectiveness Metrics is to identify the elements of the estimation process that enhance the estimation process and those elements that are of little or no value to the planning and tracking processes of a project. Process elements or activities that enhance the process are those that provide the greatest accuracy regarding the actual cost and schedule, as well as cost and schedule to completion of a project. Conversely, those elements or activities that do not enhance the accuracy of the estimates need to be isolated and eliminated.

The Process Effectiveness Metrics consist of the variances between the most recent estimates and the baseline estimates. A format for recording the data items for which the variances are recorded is shown in Table 19-4 below.

Table 19-4. Process Effectiveness Metrics

	
	Baseline
	Update
	Variance

	Size Estimate: New Code
	
	
	

	Size Estimate: Reused Code
	
	
	

	Size Estimated: Modified Code
	
	
	

	Productivity (Hours/SLOC)
	
	
	

	Cost Estimate
	
	
	

	Schedule Estimate
	
	
	

	Number of CSCIs
	
	
	

	Number of CSUs
	
	
	

	Documentation page count
	
	
	

Section 19.10 goes into greater detail concerning metrics for software tracking and measurement. Section 19.7.5 discusses the importance of tracking productivity and code condition (code size by percent new, reused, modified) when pricing to insure consistency between program size and proposed effort/schedule.
· Process Cost Metrics. The purpose of the Process Cost Metrics is to quantify the cost of the software cost/schedule estimating process and identify ways to increase the cost effectiveness of the process. Elements or activities that cost-effectively enhance the project planning and tracking process will remain intact while those that are of little or no value to the planning and tracking processes of a project will be eliminated. Process elements or activities that are cost effective are those that provide meaningful input to the planning and tracking process with a minimum amount of work effort. Conversely, those elements or activities that require effort but do not return meaningful data need to be isolated and eliminated.

NOTE:

Collecting and analyzing metrics are key to process improvement efforts. Use metrics to evaluate every step of the process. Change process steps as needed and don't be afraid to delete steps if they are found to have no added value.

The elements and definitions of the Process Cost Metrics are divided into two categories: effort to perform the estimates; and the cost of tools. The effort metrics include the person hours for Size Estimates and Cost/Schedule Estimates. The cost of the tools is a summation of the following:

· Purchase Price

· Training Cost

· License Renewal

· Special Hardware

· Consulting Fees

These metrics should be collected for each estimate developed.

Software Development Standards

As stated earlier, very often the government requires software development to follow DoD-STD-2167A/498, which is the Department of Defense standard that specifies the overall process for the development and documentation of mission critical software systems. This standard also requires technical reviews and audits to be conducted in accordance with DoD-STD-1521B.

There are many non-DoD standards in use currently that fall into the general category headings of Independent (IEEE, ISO), Commercial (ANSI J-STD-016, Commercial High/Low, IS, MIS) and Project (Space Shuttle). The SEER-SEM User’s Manual provides a good overview of the definitions and uses of many of these standards. The Cost Xpert User’s Manual contains matrices listing the title and description of the various documents required by many of these standards.

Other standards that may affect the estimating process are: MIL-STD-499A, Engineering Management; MIL-STD-490A, Specification Practices; MIL-STD-480B, Configuration Control-Engineering Changes, Deviations and Waivers; DoD-STD-1703, Software Products Standards. Software developed in accordance with these standards generally requires more resources and is more time consuming. Therefore, the software estimation process must include and adjust for these requirements where applicable.

Benefits of SW Estimation Process

When the software estimation process is performed correctly, the benefits realized far outweigh the cost of performing an estimate. Some of the major benefits include lowering the cost of doing business, increasing and broadening the skill-level of key staff members, acquiring a deeper knowledge of the proposed project prior to beginning the software development effort, and understanding, refining, and applying the proper software life cycle mode.

As these software estimating components are enhanced, refined, and continually applied, the software estimating process, associated tools, and resulting products attain higher levels of quality and ultimately benefit all.

Estimating Software Size

Software size is a key input to most software cost estimating methodologies. However, it is not always easy to determine size, especially during the early stages of a program. Currently, there are numerous tools available for size estimation; many of which are included in, or related to, currently available software cost models. Current software cost models usually accept input from more than one sizing approach. An SEI requisite is that there needs to be a structured approach for estimating size and the amount and complexity of existing software that can be reused. This section will describe the various methods for software size estimating, including reused and COTS software.

The Cost Xpert User’s Manual recommends that for small projects (generally, less than $50K) typically either a bottoms-up or top down estimate is used to generate a size estimate. For medium sized projects ($50K to $1M), probably one of the metric based approaches should be employed (lines of code, function points, or object metrics). Analysts can supplement this estimate with one of the two heuristic approaches (bottoms-up or top down) in order to validate the numbers. For larger projects, it is recommended to use two or more of the metric based approaches and correlate the results.

Heuristic Approaches ("Rule of Thumb")

Although this section will concentrate on metric based approaches to size estimation, the two heuristic approaches will be briefly discussed first for completeness. The Cost Xpert User’s Manual is referred to for the remainder of the Heuristic subsection. Heuristic approaches to estimating the program size rely on the fact that the same basic activities will be required for a typical software development project and that these activities will require a predictable percentage of the overall effort. For example, traditional projects typically include activities that can be categorized as requirements analysis, design, coding, testing, and documentation. The percentage of effort required for these activities is predictable, varying based on the type of project and the size of the project. This knowledge is the basis of heuristic based estimating, whereas metric based approaches rely on a correlation between the metric being employed and the ultimate effort involved in building the software.

Bottoms-Up

For the bottoms-up approach, divide the program into modules. For each module, directly estimate the level of effort required in terms of person months or person hours. This provides the estimated total effort for the coding portion of the development. Quite often, this portion of the estimate relies heavily on input from the actual programming team.

Then look at the other life cycle activities that are required. This list of activities will vary based on the life cycle standard being used during this development effort, plus there may be some project specific activities. For each of these activities, estimate the effort required.

Finally, compare the percentages of effort for each activity in the project plan with standard percentages. If the percentages roughly match the standard percentages, then there is a relatively high degree of confidence that the allocation of effort between activities is reasonable. If the percentages deviate from the standard percentages significantly, this may indicate an unreasonable amount of effort, either too high or too low, for one or more activities.

In summary for bottoms-up cost estimating, start with a list of all required activities, estimate the effort for each, compare these estimates with typical percentages, then roll the costs up to a total project cost.

Top Down

For top down estimating, begin with an estimate of the total effort for the entire project. Then use typical percentages for each life cycle activity to calculate out the effort for each of those activities. Then compare the predicted effort for each activity with the required work to determine if the numbers seem reasonable. If not, the total effort can be adjusted up or down as required.

Metric Based Models

Three currently popular-metric based approaches for estimating software size are source lines of code (SLOC), function points and object points. The Cost Xpert User’s Manual provides a good summary of the strengths for each of the different approaches for metric based size estimates. Lines of code are particularly valuable for real time and embedded systems with little user interface. This was the original metric based approach and was popularized by COCOMO. The basic COCOMO model has been incorporated into literally dozens of costing tools, and remains the most common approach.

Function points were introduced by IBM in the early 1980s. This approach employs user interface features to estimate program size. It is the most common technique for estimating management information system (MIS) application size. Object metrics have become feasible only with the popularization of object oriented development and use objects as a predictor of program size.

For these metric based approaches, there are several estimating models and techniques available. A summary of software sizing approaches with appropriate examples follows.

Source Lines of Code (SLOC)

Per STSC’s Report, estimating SLOC is the traditional and most popular technique used to estimate the size of a software project. The appeal of estimating SLOC is that it is a simple technique, at least in concept, and often is automated. However, because determining which lines of code to count can be ambiguous, rules are needed for which types of lines to count in a

programming language. Two of the difficulties with using SLOC as an estimate in project planning are:

· SLOC cannot be estimated reliably in the early phases of the development cycle unless SLOC data are available from similar, completed projects.

· The work content of a line of code varies widely among higher-order programming languages.

Boehm in his briefing “An Overview of the COCOMO.II Software Cost Model” stated that defining a line of code is difficult due to conceptual differences involved in accounting for executable statements and data declarations in different languages. To minimize these problems, the SEI definition checklist for a logical source statement was used in COCOMO.II for defining the line of code measure. (COCOMO.II refers to version 2.0 released in 1997.) Figure 19-8 shows a portion of the definition checklist as it is being applied to support the development of the COCOMO.II model. Each check mark in the "Includes" column identifies a particular statement type or attribute included in the definition, and vice-versa for the excludes. Other sections in the definition clarify statement attributes for usage, delivery, functionality, replications and development status.

Figure 19-8. Source Lines of Code Sizing

	
	Definition Checklist for Source Statements Counts
	

	
	[image: image19.wmf]3,500

53,500

103,500

153,500

203,500

253,500

Sep-95

Oct-95

Nov-95

Dec-95

Jan-96

Feb-96

Mar-96

Apr-96

May-96

Jun-96

Jul-96

Aug-96

Sep-96

Oct-96

Nov-96

Dec-96

SLOC

New Code

Reused Code

[image: image20.wmf]99.50

19.70

6.01

1.48

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

Coding

Unit Test

System

Testing

Operation

Defects/KSLOC

	 Definition name:
	 Logical Source Statements
	Date:
	
	
	
	

	
	[image: image21.wmf]3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Jul-93

Oct-93

Jan-94

Apr-94

Jul-94

Oct-94

Jan-95

Apr-95

Jul-95

Oct-95

Jan-96

Apr-96

Jul-96

Oct-96

Feb-97

May-97

Aug-97

Nov-97

Defects

Predicted Defects

Actual Defects

Closed Defects

[image: image22.wmf]3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Jul-93

Oct-93

Jan-94

Apr-94

Jul-94

Oct-94

Jan-95

Apr-95

Jul-95

Oct-95

Jan-96

Apr-96

Jul-96

Oct-96

Feb-97

May-97

Aug-97

Nov-97

Defects

Predicted Defects

Actual Defects

Closed Defects

	
	 (basic definition)
	Originator:
	COCOMO 2.0

	

	
	
	Measurement unit:
	Physical source lines
	
	
	
	
	

	
	
	
	Logical source statements
	4
	
	
	
	

	
	Statement type
	Definition
	
	Data array
	
	
	Includes
	Excludes
	

	
	
	When a line or statement contains more than one type,
	
	
	
	
	

	
	
	Classify it as the type with the highest precedence.
	
	
	
	
	

	
	1
	Executable
	
	Order of precedence
	1
	
	
	

	
	2
	Nonexecutable
	
	
	
	
	
	
	
	

	
	3
	 Declarations
	
	
	
	
	2
	
	
	

	
	4
	 Computer directives
	
	
	
	
	3
	
	
	

	
	5
	 Comments
	
	
	
	
	
	
	
	

	
	6
	 On their own lines
	
	
	
	
	4
	
	
	

	
	7
	 On lines with source code
	
	
	
	5
	
	
	

	
	8
	 Banners and non-blank spacers
	
	
	
	6
	
	
	

	
	9
	 Blank (empty) comments
	
	
	
	7
	
	
	

	
	10
	 Blank lines
	
	
	
	
	8
	
	
	

	
	11
	
	
	
	
	
	
	
	
	

	
	12
	
	
	
	
	
	
	
	
	

	
	How Produced
	Definition
	
	Data array
	
	
	Includes
	Excludes
	

	
	1
	Programmed
	
	
	
	
	
	
	
	

	
	2
	Generated with source code generators
	
	
	
	
	
	

	
	3
	Converted with automated translators
	
	
	
	
	
	

	
	4
	Copied or reused without change
	
	
	
	
	
	
	

	
	5
	Modified
	
	
	
	
	
	
	
	

	
	6
	Removed
	
	
	
	
	
	
	
	

	
	7
	
	
	
	
	
	
	
	
	

	
	8
	
	
	
	
	
	
	
	
	

	
	Origin
	Definition
	
	Data array
	
	
	Includes
	Excludes
	

	
	1
	New work: no prior existence
	
	
	
	
	
	
	

	
	2
	Prior work: taken or adapted from
	
	
	
	
	
	
	

	
	3
	 A previous version, build, or release
	
	
	
	
	
	

	
	4
	 Commercial, off-the-shelf software (COTS), other than libraries
	
	
	

	
	5
	 Government furnished software (GFS), other than reuse libraries
	
	
	

	
	6
	 Another product
	
	
	
	
	
	
	
	

	
	7
	 A vendor-supplied language support library (unmodified)
	
	
	
	

	
	8
	 A vendor-supplied operating system or utility (unmodified)
	
	
	
	

	
	9
	 A local or modified language support library or operating system
	
	
	

	
	10
	 Other commercial library
	
	
	
	
	
	
	

	
	11
	 A reuse library (software designed for reuse)
	
	
	
	
	

	
	12
	 Other software component or library
	
	
	
	
	
	

	
	13
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

Some examples of SLOC estimating models in each model category are summarized in the following sections.

Analogy Models

These models estimate program size by comparison with one or more similar programs. Currently popular are database analogy models, such as the Aerospace Software Size Estimator as discussed by Marilee J. Wheaton in her article on “Functional Software Sizing Methodology”. This model contains over 1,000 historical programs, primarily in the military space, avionics, and ground-based environments. The user can specify his or her specific application category and obtain a list of historical projects with sizes and languages. The user can further specify a subset of an application, such as mission control. This will result in fewer similar programs, but the programs will be more relevant.

Analogy sizing models possess the advantage of using historical data for comparison. They are also useful very early in a program. However, they are of limited use for any programs outside of the historical database. For example, the Aerospace model would be ineffectual for business applications.

Functionality (Grass Roots) Models

These models compute SLOC from components of known size from a database. If the user knows what functions a program will perform, they can obtain a size estimate for each function and sum the function estimates to estimate the size of a program. The Software Architecture, Sizing, and Estimating Tool (SASET), as discussed in the SASET 3.0 User's Guide by Robert W. Ratliff, et. al., allows size to be input based on functionality. The user specifies the functions performed by the program, and the model obtains a SLOC estimate for each function from the database. For example, if the user specifies a telemetry processing function, the model provides an estimate of 5,950 HOL statements. The Quantitative Software Management (QSM) Size Planner, defined in QSM Corporation’s Size Planner User's Manual, has a “standard components” option which also estimates the size of each function specified, primarily for business applications. For example, if the user specifies a screen function, the model provides an estimate of 2,535 lines of COBOL code.

Like analogy models, functionality sizing models estimate size based on historical data. In contrast to traditional bottoms-up models, they are often useful early in a program since many functions are defined during software requirements analysis or preliminary design. However, like analogy models, these models are database dependent; similar functions with historical sizes must be available. A further limitation of models such as SASET is that the language is not specified. This can be problematic since there are significant differences among HOLs.

Expert Judgment Models
These models estimate SLOC based on the opinions of one or more experts. A simple example of an expert judgment technique is a Program Evaluation and Review Technique (PERT) for sizing used in several cost models. A more refined example is the SEER Software Sizing Model as discussed in the SEER-SSM User’s Guide, which is based on an expert judgment model developed by George Bozoki. In SEER-SSM, the user specifies at least one “reference” program, then performs a number of “structured judgments” to determine the size of the new program(s). The user performs a pair-wise comparison of program sizes, inputs a PERT estimate for all new programs, selects the most probable size range from a set of ranges generated by the model, and performs a ranking to verify the pair-wise comparison made initially.

In the sizing arena, expert judgment models are either used alone or as aids in determining inputs for other categories of models. Expert judgment models have a disadvantage in that the views of experts are often biased. Despite their subjectivity, however, expert judgment models are often the only choice for new or unique situations.

Parametric Models
These models use inputs consisting of numerical or descriptive values to compute program size in SLOC. They are developed using regression analysis and other methods, such as numerical analysis or management surveys. One subset of parametric sizing models are regression-based models. These are similar to database analogy models in that historical data are used in model development. Instead of using direct comparisons, however, these models use equations, sometimes called size estimating relationships (SERs) developed from regression analysis of the historical data. Minoru Ikatura and Akio Takayanagi, in their paper “A Model For Estimating Program Size and Its Evaluation” developed a regression-based SER for business programs which has the necessary high correlation for a valid equation. While regression-based parametric sizing models transcend the need for direct comparison, they are usually limited to the scope of the database used. Furthermore, as illustrated by Mark J. Whetstone’s research and later by Frank Albanese Jr., it is often difficult to obtain the requisite high correlation for model validity. The Ikatura and Takayanagi SER is one of the few successful efforts.

Another example of a parametric sizing model is the PRICE-S Sizer, which is included in the PRICE-S Reference Manual. The PRICE-S Sizer was not developed solely from regression analysis; other techniques were also used. This model has multiple inputs plus a size calibration factor, SICAL, which can be used to adapt the model to the user's environment.

Parametric sizing models generally possess the advantages noted for the PRICE-S Sizer model and for parametric models in general. They are fast and easy to use and are generally useful early in a program, but may be challenging to use for new or unique programs.

Function Point

Function point is a method of estimating size during the requirements phase based on the functionality to be built into the system. Referring to the STSC Report, using function points as a basis for size estimates grew out of the difficulties with SLOC mentioned above. Function points are derived by:

· First, counting the number of external inputs, inquiries, outputs, master files, and interfaces;

· Second, adjusting the counts for complexity; and

· Third, summing the results into a Function Point Count (FPC).

The FPC is independent of the programming languages used on the project. Tables of source statements per function point have been developed through research for most programming languages and major dialects. This technique, known as Function Point Analysis (FPA), grew out of estimating the size of Information System (IS) software development projects.

FPA has proven useful because:

· It is based on information that is available early in a project's life cycle.

· It can be used on projects with multiple programming languages and multiple platforms.

Criticisms of using FPA are:

· It is hard to use.

· It does not measure mathematical optimization, various embedded systems, scientific and real-time process control applications as well as it measures information systems.

Function point sizing models were popularized by the extensive research of A. J. Albrecht and J. E. Gaffney for data processing programs written in COBOL and PL/1 programming languages as documented in their article “Software Function, Source Lines of Code, and Development Effort Prediction: A Software Science Validation.” They are parametric models in that they use design parameters to estimate size; however, the parameters were not developed from regression analysis. Instead, Albrecht hypothesized that five program functions; inputs, outputs, inquiries, interfaces, and master files; could be used to estimate size. The researchers performed function point analysis on more than thirty data processing programs and concluded that function points are not only a valid predictor of software size, but were also superior to SLOC as a predictor of software development cost or effort. The CHECKPOINT model, as discussed in Software Productivity Research, Inc.’s CHECKPOINT For Windows User's Guide, employs function points as a primary input for effort and schedule estimation. Other models such as PRICE-S, Cost Xpert and QSM Corporation’s Software Life Cycle Model (SLIM) allow function points as an alternative to SLOC for program size.

A brief definition of the five attributes used for function points, as described by Donald J. Reifer in the ASSET-R Version 2.0 User's Manual, is shown in Table 19-5.

Table 19-5. Function Point Attributes

	Attributes
	Definition

	External inputs (EI)
	All unique data or control inputs that cross the system boundary and cause processing to occur. Examples are input screens and tables.

	External outputs (EO)
	All unique data or control outputs that cross the system boundary after processing has occurred. Examples are output screens and reports.

	External inquiries (EQ)
	All unique transactions which cross the system boundary to make active demands on the system. Examples are prompts and interrupts.

	Internal files (ILF)
	All logical groupings of data that are stored within a system according to some pre-defined conceptual schema. Examples are databases and directories.

	External interfaces (EIF)
	All unique files or programs that cross the system boundary and are shared with at least one other system or application. Examples are shared databases and shared mathematical routines.

CASE STUDY 19-1, extended from SSCAG’s Software Methodology Handbook shows how traditional function points (sometimes called Albrecht function points) are computed. The user must determine the number of external inputs (EI), external outputs (EO), external inquiries (EQ), internal files (ILF), and external interfaces (EIF) in the program. This will give a measure of "basic" function points. The user can refine this measure by considering the complexity level of each function point and fourteen complexity adjustments factors related to the overall program, as shown in CASE STUDY 19-1.

CASE STUDY 19-1. Function Point Sizing Equations

[image: image23.wmf]99.50

19.70

6.01

1.48

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

Coding

Unit Test

System

Testing

Operation

Defects/KSLOC

[image: image24.wmf]3,500

53,500

103,500

153,500

203,500

253,500

Sep-95

Oct-95

Nov-95

Dec-95

Jan-96

Feb-96

Mar-96

Apr-96

May-96

Jun-96

Jul-96

Aug-96

Sep-96

Oct-96

Nov-96

Dec-96

SLOC

New Code

Reused Code

· “Basic” Function Points: BFP = 4 EI + 5 EO + 4 EQ + 10 ILF + 7 EIF

(With + / - 25% Complexity Adjustment)

· Unadjusted Function Points (UFP): Weight Five Attributes as Simple, Average, or Complex

	
	Complexity Weighting
	

	Attribute
	Simple
	Average
	Complex
	Total

	EI
	3
	4
	6
	

	EO
	4
	5
	7
	

	EQ
	3
	4
	6 (or 7)
	

	ILF
	7
	10
	15
	

	EIF
	5
	7
	10
	

· Adjusted Fraction Points (FP): UFP (0.65 + [0.01 x CA])

(CA is Complexity Adjustment; Sum of 14 Factors, Rated 1 to 5 for Influence)
[0 - None, 1- Little, 2 - Moderate, 3 - Average, 4 - Significant, 5 - Strong];

Ratings Defined for Each Factor)
14 Factors
	

	Complex Processing
	Multiple Site Usage

	Conversion and Installation Ease
	On-Line Data Entry

	Data Communications
	On-Line Update

	Distribution Data Processing
	Operational Ease

	End-User Efficiency
	Performance Objectives

	Facilitate Change
	Reusability

	Heavily Used Configuration
	Transaction Rate

A marked strength of function points is the excellent results obtained from the research of Albrecht and Gaffney. Ongoing research is being performed by the International Function Points User's Group (IFPUG), which meets twice a year and periodically publishes a guide to counting and using function points. Proponents of function points models also state that function point counts can be made early in a program; during requirements analysis or preliminary design. Another strength, according to Capers Jones, is that they give a more realistic measure of productivity; SLOC-per-person-month measures tend to penalize HOLs. However, function points have disadvantages compared to SLOC as a measure of size. They are often harder to visualize since a SLOC can be seen (e.g., on a code listing) while a function point is only a concept. Furthermore, function points have only been extensively studied for business or data processing applications, although attempts to adapt the function point concept to real-time and scientific environments have been made. Some function points issues are variants, real-time adaptations, and function point-to-SLOC conversion.

Function Point Variants

There have been several attempts to modify the traditional or IFPUG function points shown in CASE STUDY 19-1. In the CHECKPOINT model, for example, the fourteen complexity adjustment factors are not normally used (although the user has the option of using them). Instead the user rates the overall complexity of the problem, code, and documentation from "l " to "5", and these complexities are used to compute adjusted function points. The function points used in the QSM Size Planner also do not use complexity adjustment factors; however, they use five attribute ranges instead of three. In SEER-SEM, the user can use either IFPUG or Galorath function points instead of SLOC. Galorath function points add a sixth attribute, internal functions, to the five attributes used in traditional function points. Probably the most radical departure from traditional function points is Symon's Mark II Function Points. Mark II function points use only three attributes; inputs, outputs, and entities. An entity is any item about which the system provides information. Mark II function points were standardized in England.

Real Time Adaptation

There have been several attempts to adapt function points to scientific and real-time programs. Some of these endeavors are now briefly described.

Capers Jones' Feature Points
For some time, function point practitioners recognized that some classes of applications did not profit from function point analysis as much as they hoped. These application classes included real-time process control, mathematical optimization and various embedded systems. Feature points add a sixth attribute, algorithms, to the five used in traditional function points. According to Jones, an algorithm is a "set of rules which must be completely expressed in order to solve a computational problem". The basic feature points (BFP) equation is: BFP = 3AL + 4EI + 5EO + 4EQ + 7ILF + 7 EIF. Note that, compared to the basic function points equation in Case Study 19-1, the coefficient for ILF has been decremented by three; all others remain the same. The CHECKPOINT model includes a complexity adjustment for algorithms.

ASSET-R Function Points
The ASSET-R model uses three additional attributes to those used in traditional function points: operating modes, rendezvous, and stimulus/response relationships. Operating modes are time-dependent end-to-end processing flows to which software performance can be related. Rendezvous function points are a measure of concurrency in real-time systems; and stimulus/response relationships measure the amount of sequencing and control in real-time systems. For scientific programs, ASSET-R only adds operating modes to the five additional attributes. Unlike traditional function points and feature points, ASSET-R does not weigh attributes differently; it assigns a coefficient of "l" to all attributes and uses other inputs to adjust the total for complexity. The ASSET-R manual shows that, for a sample of 34 data processing, scientific, and real-time programs, the model was accurate to within 20% of actual SLOC values based on software requirements specification data.

Real-time SLOC from Externals
Gaffney and Wehling studied the feasibility of estimating SLOC for real-time programs with the four "external" attributes of traditional function points: EI, EO, EQ, and EIF. They also studied this issue with only three of the external attributes: EI, EO, and EQ. Their sample involved nineteen military real-time programs, mostly written in FORTRAN. The resultant equations relating "externals" to SLOC showed a correlation of .89 when four externals were used, and .87 when three externals were used.

According to the “Function Point FAQ” (Frequently Asked Questions) homepage, when the function point technique was originally developed, it was not applied to systems with Graphical User Interfaces (GUIs), since there were no GUIs. In 1995, IFPUG completed Release 4.0 of their Function Point Counting Practices Manual. It contains the official rules for, and extensive examples of, counting GUI based systems. Subsequently, IFPUG produced a case study that contained the count of an entire GUI-based system.

Function points can be used to measure object oriented development applications and their size is the same as if object oriented development had not been used. This is because the function point count for an application is independent of the technology used to develop the application.

Function Point-to-SLOC Conversion

Referring to the SSCAG Handbook, it is sometimes necessary to convert from SLOC to function points, or vice-versa. For instance, consider that a user of SLIM only knows the number of function points in his or her program but does not know SLOC. According to QSM Corp’s SLIM 3.0 for Windows User Manual, since the SLIM algorithms are based on SLOC that user must specify a ratio or “gearing factor”, to convert the number of function points to the number of SLOC. The opposite situation occurs in CHECKPOINT where SLOC inputs must be converted to function points. To help in this conversion, sets of SLOC-to-function point ratios have been developed for various languages based on research by Jones, Reifer, and Dan Galorath and Karen McRitchie in their paper “Software Size Measures: Source Lines of Code and Functions.” Jones also specifies language levels that, in effect, show the number of equivalent assembler language SLOC generated by one SLOC of the specified language. Jones further states that language levels are useful for converting size from one language to another, and for assessing relative language productivities (although the relationship between language level and productivity is not linear).

While function point-to-SLOC conversion ratios are useful, and sometimes necessary, they must be used with caution. While the researchers cited above agree on the ratios for some languages such as Ada, they differ, sometimes significantly, on the ratios for others such as Pascal and PL/l. For the COBOL language, research by Garland S. Henderson, in his thesis The Application of Function Points to Predict Source Lines of Code for Software Development showed that ratios are inconsistent both within and among databases. For two databases maintained at the Air Force Standard Systems Center, Henderson found that, for the military database of 26 COBOL programs, the average SLOC-to-function point ratio was 14:1, while for a database of 31 commercial COBOL programs, the average SLOC-to-function point ratio was 165:1. Furthermore, there was considerable variance for these ratios within the databases, and the results differ significantly with the ratios developed by Jones, Reifer, and Galorath. For some languages, therefore, it appears that ratios should not be used and, for cost estimation, it may be best to use a model for which the algorithms are based on the user's size measure. Table 19-6 compares the FP to SLOC ratios for some sample languages.
Table 19-6. Function Point to SLOC Conversion

	Language
	Jones Language Level
	SLOC/FP
	Reifer SLOC/FP
	Galorath SLOC/FP

	Assembler
	1.0
	320
	400
	320

	COBOL
	3.0
	105
	100
	58

	FORTRAN
	3.0
	105
	105
	61

	Ada
	4.5
	71
	72
	73

	PROLOG
	5.0
	64
	64
	N/A

	Pascal
	3.5
	91
	70
	71

	PL/1
	4.0
	80
	65
	71

Object Points

With the advent of Object Oriented (OO) programming/development (Software programs are built from prefabricated, pretested building blocks (objects) combined together to produce a fully written software application. The idea of OO programming is to make the writing of complex computer software easier.), there has been a growing demand for new ways to measure software size in an OO environment.

Per the Cost Xpert User’s Manual, object metric based estimating is seeing an increased following among companies using object oriented techniques throughout the software life cycle (e.g., object oriented analysis, design, and programming). Although still relatively new, it was applied on a massive scale within Hewlett Packard with great success. One very nice thing about the object metric approach is that it works equally well with both MIS type applications and with the embedded, scientific, and system level programming projects that are not well served by function points. Of course, a disadvantage is that it only works if the software development is done using object oriented techniques.

According to the STSC Report, objects typically are screens, reports, and third generation modules. (By definition, they are not directly related to "objects” in an object-oriented methodology.) Getting the Object Point Count is very similar to getting the FPC described above; adjustments are made to the raw count for complexity and summed to get a final count. The advantage of counting object points is that it usually takes less effort than function points and the results are comparable.

CASE STUDY 19-2 (extended from the “COCOMO.II Software Cost Estimation Model” abstract) presents the baseline COCOMO.II Object Point procedure for estimating the effort involved in prototyping projects. Definitions of terms are provided in Table 19-7.

Table 19-7. Terms
	Term
	Definition

	NOP
	New Object Points (Object Point count adjusted for reuse)

	Srvr
	Number of server (mainframe or equivalent) data tables used in conjunction with the SCREEN or REPORT.

	Clnt
	Number of client (personal workstation) data tables used in conjunction with the SCREEN or REPORT.

	%reuse
	The percentage of screens, reports, and 3GL modules reused from previous applications, pro-rated by degree of reuse.

Note that the use of the term "object" in "Object Points" defines screens, reports, and 3GL modules as objects. This may or may not have any relationship to other definitions of "objects", such as those possessing features such as class affiliation, inheritance, encapsulation, message passing, and so forth. Different counting rules for "objects" of that nature are required when used in languages such as C++.

CASE STUDY 19-2. Steps for Object Point Estimate

· Assess Object-Counts. Estimate the number of screens, reports, and 3GL components that will comprise this application. Assume the standard definitions of these objects I in your ICASE environment.

· Classify each object instance into simple, medium and difficult complexity levels depending on the values of characteristic dimensions. Use the following scheme:

	For Screens
	For Screens

	
	# and source of data tables
	
	# and source of data tables

	Number of Views Contained
	Total < 4

(< 2 srvr < 3 clnt)
	Total < 8 (2/3 srvr 3-5 clnt)
	Total 8 +(> 3 srvr > 5 clnt)
	Number of Sections Contained
	Total < 4

(< 2 srvr < 3 clnt)
	Total < 8

(2/3 srvr 3-5 clnt)
	Total 8

+(> 3 srvr > 5 clnt)

	< 3
	Simple
	Simple
	medium
	0 or 1
	simple
	simple
	Medium

	3 - 7
	Simple
	Medium
	difficult
	2 or 3
	simple
	medium
	Difficult

	> 8
	Medium
	Difficult
	difficult
	4 +
	medium
	difficult
	Difficult

· Weigh the number in each cell using the following scheme. The weights reflect the relative effort required to implement an instance of that complexity level.:

	
	Complexity-Weight

	Object Type
	Simple
	Medium
	Difficult

	Screen
	1
	2
	3

	Report
	2
	5
	8

	3GL Component
	
	
	10

· Determine Object-Points. Add all the weighted object instances to get one number, the Object-Point count.

· Estimate percentage of reuse expected to be achieved in this project. Compute the New Object Points to be developed,

NOP = (Object Points)
[image: image1.wmf]´

-

(

%

)

100

100

reuse

· Determine a productivity rate.
PROD = NOP/person-month, from the following scheme.

	Developers' expertise and capability
	Very Low
	Low
	Nominal
	High
	Very High

	ICASE maturity and capability
	Very Low
	Low
	Nominal
	High
	Very High

	PROD
	4
	7
	13
	25
	50

· Compute the estimated person-months.
PM = NOP/PROD.

Reused Code

According to NRaD’s Manual reused code is considered in most current software cost models. The only way to estimate the amount of code to be reused is for the programmer/analysts to examine the existing code in detail. The examination should derive estimates for three factors to help estimate the effort: 1) the percentage of code that will be redesigned, 2) percentage to be recoded or modified, and 3) percentage to be retested. Cost models use these estimated percentages to arrive at an equivalent line of code estimate.

The equivalent lines of code estimate represents the amount of new code that could be developed for the same effort it would take to modify the existing code. Some models allow the user to enter these three percentages while other models assume a standard percentage of effort to develop equivalent lines of new code. The REVIC and SEER models allow the user to enter the three factors. SASET uses a default of 73%, i.e., it assumes any reused code will consume 73% of the effort that it would take to develop equivalent new code.

When the three percentages are used, the equivalent new lines of code is calculated as follows:

([%Redesign + %Recode + %Retest]/3) * Existing Code = Equiv LOCs

For example, equivalent LOCs for a program that had 10,000 LOCs and was assumed to require 40% redesign, 50% recode, and 60% retest would be calculated as:

([40% + 50% + 60%]/3) * 10,000 = 5,000 Equiv. LOCs

According to the “COCOMO.II Software Cost Estimation Model” abstract, the COCOMO.II model uses a nonlinear estimation model for estimating size in reusing software products. Analysis of reuse costs across nearly 3000 reused modules in the NASA Software Engineering Laboratory indicates that the reuse cost function is nonlinear in two significant ways.

It does not go through the origin. There is generally a cost of about 5% for assessing, selecting, and assimilating the reusable component.

Small modifications generate disproportionately large costs. This is primarily due to two factors: the cost of understanding the software to be modified, and the relative cost of interface checking.

The results of a study conducted by Parikh and Zvegintzov indicates that 47% of the effort in software maintenance involves understanding the software to be modified. Thus, as soon as one goes from unmodified (black-box) reuse to modified-software (white-box) reuse, one encounters this software understanding penalty. Also, research by Gerlich and Denskat shows that, if one modifies k out of m software modules, the number N of module interface checks required is N = k * (m-k) + k * (k-1)/2.

The size of both the software understanding penalty and the module interface checking penalty can be reduced by good software structuring. Modular, hierarchical structuring can reduce the number of interfaces that need checking. Software that is well structured, explained, and related to its mission will be easier to understand.

COTS Sizing

Software developers are using increasing amounts of commercial-off-the-shelf (COTS) components to construct new systems. Their motivation is to decrease development costs, schedule and technical risks. Richard D. Stutzke’s paper “Cost Factors for COTS Integration” refers to a study done comparing how three different models estimate the size and cost of COTS software. Two models, COCOMO.II and SEER-SEM employ algorithms similar to those used to estimate the costs of reusing software. The COCOMO.II model addresses the case where one has the source code for the COTS product and represents the nonlinear dependence of adaptation costs with the amount of existing code that will be modified. For those cases without the source code, it is believed that the size can be measured in function points and then converted to SLOC for the computations. A LORAL COTS model used function points as a basis for its sizing. It used standard function point counting rules to size the functionality that is incorporated, including the interfaces between the COTS components and the custom code. Only the portions of the COTS components that perform functions that are either used or interface with the custom code are counted. Of the three models evaluated in the study, only SEER-SEM addressed the full range of COTS products. SEER-SEM was also the only model to address differences in code type (custom code (developmental), glue code and COTS code) and three levels of reusability for COTS components [code not reused (new code), existing code not designed for reuse, and existing code designed for reuse.] Depending upon the category of the COTS type, either SLOC or function point is used for sizing. The bottom line is that COTS software must be evaluated and any coding required must be sized during the estimation process, just like any other software. Appendix 19E, “COTS Software” discusses the peculiar aspects of using COTS software components in a system.
Summary of Metric Based Sizing Models

The Cost Xpert User’s Manual compared the strengths of metric based sizing models as follows: SLOC sizing methods are particularly useful for real time and embedded systems applications. Function point based estimates are one of the best approaches for a wide range of MIS applications that have significant interaction with the environment and where this environmental interaction is the major cost driver. Function points are significantly less effective for applications where the environmental interactions are secondary to the algorithmic requirements of the program. If object oriented software development is being used on the program, the object metric approach works equally well with both MIS type applications and with the embedded, scientific, and system level programming projects that are not well served by function points.

Current sizing models usually include more than one of the metric based approaches mentioned in this section. Other sizing models are already available or currently being developed in one or more of the categories of models discussed. For example, the QSM Size Planner is a composite model which contains an expert judgment model (“Fuzzy Logic”), a functionality model (“Standard Components”), and a function points model for size estimation. The user can select any combination of models or use all three and compute a weighted size estimate. Undoubtedly, more sizing models will become available in the future. No single sizing model has been shown to be accurate, or even useful, for a wide range of programs. Each model has a unique set of advantages and limitations.

Software Cost Estimating Methodologies

Once the basic system being estimated has been defined, planned and sized, the next step is to select an estimating methodology. There are five basic methodologies for estimating software.

· Analogy (Comparative)

· Grass Roots (Engineering Estimate or Bottom-Up)

· Top-Down

· Expert Judgment

· Parametric (Algorithms)

Table 19-8 provides a brief description of these methodologies along with their advantages and limitations. Each of the methodologies will be defined and summarized below. An extensive appendix (Appendix 19D) is devoted to parametric software estimating models due to their frequent use in estimating software development costs.

	Table 19-8. Software Cost Estimating Methodologies

	Methodology
	Analogy or Comparative
	Grass Roots, Engineering Estimate, or Bottom-up
	Top-Down
	Expert Judgment
	Parametric or Algorithms

	Description
	Compare project with past similar projects.
	Individuals assess components, then component estimates are summed to obtain total estimate.
	Project partitioned into lower level components & life cycle phases beginning at highest level
	Consult with one or more experts.
	Perform overall estimate using design parameters and mathematical algorithms.

	Advantages
	Estimates are based on actual experience.
	Accurate estimates are possible because of detailed basis for estimate; also promotes individual responsibility, supports project tracking.
	More applicable to early project estimates. Considers system level activities, faster, easier to implement.
	Little or no historical data are needed; good for new or unique projects.
	Models are usually fast and easy to use, and useful early in a program. They are also objective and repeatable.

	Limitations
	Truly similar projects must exist.
	Methods are time- consuming. Detailed data needed may not be available, especially early in a program. Integration costs may be disregarded. Process is costly
	Less accurate than other methods, tends to overlook lower-level components, provides little detail.
	Experts tend to be biased, and knowledge level is sometimes questionable.
	They are often inaccurate and unstable. Also, calibration to historical data may not be relevant for new programs.

Analogy or Comparative

According to NASA’s Handbook, estimating by analogy is the act of comparing the proposed project to previously completed similar projects where project development information is known. Actual data from the completed projects are extrapolated to estimate the proposed project. Estimating by analogy can be done either at the system level or the component level.

For example, consider the situation in which an agency wanted to develop a new payroll program that serves 5,000 people and contains 100,000 lines of COBOL code. A second agency had developed a similar 100,000-line program for two million dollars. It could be expected that the second agency's program, ignoring inflation, would also cost two million dollars. The advantage of the analogy method is that it is based on actual experience. However, it is limited because, in most instances, no truly similar software programs exist. For example, the cost of 100,000 lines of C++ code for a radar program would not be the same as that of 100,000 lines of COBOL code for payroll software.

The main strength of this method is that the estimates are based on actual project data and past experience. Differences between completed projects and the proposed project can be identified and impacts can be estimated. One problem with this method is identifying those differences. This method is also limited because similar projects may not exist, or the accuracy of available historical data are suspect. The analogy or comparative technique uses parametric approaches including the use of CER's. The analogy methodology should not normally be used alone to estimate most software costs, except as a last resort, although it can be useful in checking other estimates for reasonability.

Grass Roots, Engineering Estimate or Bottoms-up

Grass roots estimating, also called “engineering estimating” or “bottoms-up”, provides a more sophisticated means of analyzing costs. It involves estimating software costs by a detailed analysis of the cost of each unit (or CSU), then summing unit costs to determine the cost (or effort) for each CSC, each CSCI, and then the software cost for the overall system. Grass roots estimating is sometimes used during proposal preparation and, subsequently, for tracking costs of software projects.

An advantage of this method is that it provides a detailed basis for cost estimating and, consequently, tends to be more accurate and stable than other methodologies because it deals with low-level components. Also, since unit costs are assessed by personnel responsible for the development of the unit, this type of estimating is a good managerial tool for promoting individual responsibility for keeping units within the estimated costs. It supports project tracking more directly than other methods because its estimates usually address each activity within each phase of the software development life cycle.

However, grass roots estimating has several disadvantages. Since detailed information about each unit is required, it may be difficult to use in certain circumstances, especially during the early phases of the life cycle where detailed information is often unavailable. Using grass roots techniques may not be appropriate until detailed design has been completed. Also, grass roots estimating is usually very time-consuming, which makes it inappropriate when either time or available estimating personnel are limited. For these reasons, grass roots estimating is infrequently used within Government agencies where time and personnel are usually scarce. Another limitation of grass roots estimating is that it does not automatically capture the costs associated with integrating units to form higher-level components and CSCIs. Integration costs must be separately estimated.

Top-Down Method

NASA’s Handbook summarizes the top-down method of estimation, which is based on overall characteristics of the software project. The project is partitioned into lower-level components and life cycle phases beginning at the highest level. This method is more applicable to early cost estimates when only global properties are known. Advantages include consideration of system-level activities (integration, documentation, project control, configuration management etc.), that may have been ignored in other estimating methods. The top-down method is usually faster, easier to implement and requires minimal project detail. However, it can be less accurate and tends to overlook lower-level components and possible technical problems. It also provides very little detail for justifying decisions or estimates.

Expert Judgment

The STSC Report and SSCAG Handbook summarize this method. Expert judgement uses the experience and knowledge of experts to estimate the cost of a software project. An advantage of this method is the experience from past projects that the expert brings to the proposed project. The expert also can factor in project impacts caused by new technologies, applications, and languages. Examples of popular expert judgment techniques include the Delphi and Wideband Delphi methods. Expert judgment techniques are suitable for assessing the differences between past and future programs; and are especially useful for new or unique programs for which no historical precedent exists. However, the expert's biases and sometimes insufficient knowledge may create difficulties. It can be hard to document the factors used by the expert who contributes to the estimate. Although Delphi techniques can help alleviate bias problems, experts are usually hard-pressed to accurately estimate the cost of a new software program. Therefore, while expert judgment models are useful in determining inputs to other types of models, they are not frequently used alone in software cost estimating.

Parametric Modeling or Algorithms

Parametric modeling, as defined here, is a combination of algorithmic and top-down models as described by Boehm. The algorithmic method involves the use of equations to perform software estimates. The equations are based on research and historical data and use such inputs as SLOC, number of functions to perform, and other cost drivers such as language, design methodology, skill-levels, risk assessments etc. Parametric models and techniques for software projects generally estimate overall system or CSCI costs based on design characteristics, or parameters, of a software program. The overall costs can later be partitioned among lower-level components (CSCs) or among life cycle phases.

Advantages of this method include being able to generate repeatable results, easily modifying input data, easily refining and customizing formulas, and better understanding of the overall estimating methods since the formulas can be analyzed. Also, they are usually fast and easy to use, require little detailed information, and capture system or CSCI-level costs. The disadvantages are that they tend to be less accurate and less stable than the grass roots methodology; and they do not inherently foster individual responsibility. The STSC Report adds that the results can be questionable when estimating future projects that use new technologies. Also, the formulas generally are unable to deal with conditions such as exceptional personnel, exceptional teamwork and exceptional matches between skill levels and tasks.

Parametric modeling is usually the methodology of choice for Government agencies because of the minimal time and effort required and because it is useful in early phases of a software development program when little is known about the program. Also, attempts are continually being made to calibrate available models to insure greater accuracy. Because of their widespread use, parametric models will be discussed in general here and some currently popular software parametric cost models will be discussed in Appendix 19D.
All parametric models use one or more design parameters to estimate cost or level of effort. The earliest parametric models, some of which are still in use, were simple models that estimated cost based only on the size of the software in SLOC, machine instructions, or other measures. They were often of the form E = AIB where E is the effort required in dollars, man-months, or similar measure; I is the size of the program; A is a coefficient; and B is an exponent. The coefficient and exponent are usually computed using mathematical regression analysis on historical size and effort data. This simplistic model generally shows considerable variance, even within the database from which the model was formulated, which is one reason why simple single-parameter parametric models, such as those based solely on program size, are not generally considered to be accurate.

Another limitation of these models is that the coefficients and exponents vary significantly with the database used, indicating that the models are highly database dependent. This suggests that other factors, besides the size of the software program, affect the effort or cost required. Also, other methods besides regression may be used in model development. Popular parametric cost models are discussed in the Appendix 19D.

Life cycle Costs

In addition to the costs associated with software development, the costs for the Contract Data Requirements List (CDRL) items such as manuals, specifications, plans, reports and training, plus the maintenance of the system after it becomes operational needs to be considered for the complete Life cycle costs of the project.

CDRL Deliverables Estimates

As summarized in the Cost Xpert User’s Manual, many models provide an estimate of the deliverables (such as the Software Requirement Specification (SRS)) that should be produced (based on the software development standard used, (see section 19.3.2
) and an estimated page count. The page count is useful for two reasons. First, if the delivered document deviates significantly from the estimated page count, it raises the question whether the document is sufficiently complete. Second, the numbers are useful when planning to review documents in order to estimate the magnitude of the work that will be required. Capers Jones determined that on the average, companies spend between 2 and 4 hours per document page for technical documents.

Software Maintenance Estimates

The SSCAG Handbook defines the term “software maintenance” as those software engineering activities that occur following delivery of a software product to the customer. The maintenance phase of the software life cycle is the time period in which a software product performs useful work. Typically, the development cycle for a software product spans 1 or 2 years, while the maintenance phase spans 5 to 10 years. Estimates of the magnitude of software maintenance costs range from 50 to 75% of overall software life cycle costs. In 1985 it was estimated that software maintenance typically requires 40 to 60% of the total life cycle effort. And a widely used rule of thumb for the distribution of maintenance activities is 60% for enhancements, 20% for adaptation and 20% for error correction.

Factors Influencing Maintenance Costs

Boehm stated that for each dollar spent on software development, another dollar needs to be budgeted just to keep the software viable over its life cycle and another dollar can be spent on desirable enhancements over the life cycle.

Boehm's and Nippon's Software Productivity Range Figures shows that the most important maintenance cost driver is personnel. Maintenance work is generally perceived to be less interesting, resulting in higher personnel turnover rates than new system development work. Demotivated personnel can have a huge adverse impact on a project's cost/schedule compliance.

The maintainability of software is a qualitative measure of the following factors:

· Ease of understanding that is reflected by the ability of an outside auditor to understand the structure, interfaces, functions and internal procedure of the software. Modularity, detailed design documentation, internal source code documentation and structured design all contribute to ease of understanding.

· Ease of diagnosis and testing depend upon ease of understanding and again good documentation is essential.

· Ease of change that is directly related to design criteria.

High-quality products require less maintenance and enhance both development and maintenance productivity. Investment in software reliability and modern programming practices for software development have a strong payoff during maintenance.

Software development cost models are typically ineffective in their ability to project resources for software maintenance activities for two fundamental reasons. First and foremost, they use delivered effective SLOC as the independent variable in the algorithms used to predict effort and/or schedule. The second reason is because most models define software maintenance to be only repairing errors in the code and do not include adaptive or perfective
 activities. (See Table 19-2.)

A lack of attention to software maintainability during the requirements specification, design, and coding phases generally leads to excessive software maintenance costs. Software changes occur not only as a consequence of detecting and correcting errors not discovered during development, but also as a consequence of postponing development tasks until the maintenance phase. This can be caused by tight schedules and as a consequence of changing system requirements. Figure 19-9, from NASA’s Handbook, indicates the relative impact of the penalty (cost) for delayed error correction during a software project’s life cycle, from almost no cost during preliminary design to high cost impacts during validation and operative stages. Business process re-engineering focuses on the later stages (maintenance) and the reduction of errors at those times by re-engineering the early phases.

Figure 19-9. Impact of Delayed Software Errors Detection

Error! Not a valid link.
A study referred to in the SSCAG Handbook using data from 346 large electronics manufacturing firms’ programs showed that the occurrence of software bugs was strongly related to measures of size and complexity and less strongly to the program’s usage. These findings appear to vindicate those who advocate limiting program module size in order to help reduce delivered bugs. Repairing a defect has a significant (20% to 50%) chance of introducing another defect. So the entire process can be thought of as "two steps forward and one step back".

Software Maintenance Conclusions

The following suggestions are ways of improving the three types of maintenance:

· Corrective maintenance: use of high-level languages, keep modules small, and use structured techniques,

· Adaptive maintenance: use a portable high-level language and strive for hardware independence, and

· Perfective maintenance: only improve modules that have a high usage level, have a reasonable life span and have a high cost for corrective or adaptive maintenance.

Programmers should be directed to develop reusable code. Although this may increase development costs, it will reduce maintenance costs, as reusable code is easier to maintain, partly because it is of higher quality and partly because there is less of it.

Structure of the software, the quality of available documentation, the experience and application knowledge of maintenance programmers, the extent and types of maintenance, and the management attitude, should be considered in estimating the maintainability of software.

Software Pricing Process

Pricing generates the data needed by procurement officials to make the most advisable decisions possible. The Federal Aviation Administration’s Acquisition Management System (FAA AMS) provides direction on the use of pricing within the acquisition process. Pricing, as defined in the FAA Pricing Handbook (FAA PH), is the techniques used by the procuring official to establish a “fair and reasonable price”. Price analysis and cost analysis are the two basic techniques used to accomplish this purpose. Price analysis should always be performed. Under certain circumstances, cost analysis also needs to be performed. This section will summarize selected information concerning Pricing in general and then the particulars of Software Pricing. Software pricing is based upon the same principles as software cost estimating, so an understanding of the previous sections is important. Detailed information regarding pricing in general is contained in the other chapters of the FAA PH.

Software Price Analysis

Price analysis is the process of examining and evaluating a proposed price without evaluating its separate cost elements and proposed profit. It may be accomplished by: 1) a comparison of submitted quotations; 2) a comparison of price quotations and contract prices with current quotations for the same or similar items; 3) the use of parameters (SLOC per person-month, for instance); and/or 4) a comparison of proposed prices with independently developed cost estimates.

In order to conduct software price analysis, the terms for comparing the data must be properly defined. Referring to The Department of the Navy Center for Cost Analysis (NCCA) Software Development Estimating Handbook, Phase One, dated February 1998, there are two basic types of information required to develop a quality software price analysis: 1) technical and programmatic information for the program proposal being analyzed and 2) technical and programmatic information for the analogous/similar historical programs used to develop the estimate/ICE that will be compared to the proposal.

Based on the analysis in NCCA’s Handbook, a software development estimate requires, at a minimum, the following information for the estimates being analyzed:

· Some measure of the work to be performed with associated units (i.e., SLOC counts, words, function points, etc.)

· If SLOC is utilized as the unit of measure, the associated counting convention (i.e., physical, physical with comments, logical, etc.)

· The programming language utilized (at a minimum Assembly versus Higher Order Languages (HOL (e.g., FORTRAN, Jovial, CMS-2, etc.)) versus Fourth Generation Languages (4GL)).

· The condition of the code (i.e., percent new, percent reused (modified, verbatim, translated, rehosted, COTS, etc.)), with associated definitions.

· The phases of the software development life cycle to be estimated (e.g., System Design Review (SDR) through Formal Qualification Test (FQT)).

· The development mode (at a minimum, embedded versus non-embedded). Embedded Software is defined as software that is inside a physical object and controls its behavior. This is a more or less specialized term for software inside navigational devices, radar sets, oscilloscopes, and other instruments. Embedded software has its own characteristic productivity and quality profiles. (Source: Capers Jones). This is software that determines the functionality of microprocessors and other programmable devices that are used to control electronic, electrical and electro-mechanical equipment and sub-systems. The programmable devices are often "invisible" to the user. (Source: The TickIT Guide.))

· Especially for historical costs, if known, the name of the contractor responsible for developing the program. NCCA contends that contractor-specific data holds the greatest possibility for increasing the accuracy and decreasing the variance associated with software estimating tools.

In addition to the above items, there are four other areas that can be cost drivers for software that are input parameters for most software parametric cost models:

1.) Project Application – MIS, communications, radar, etc.

2.) Specification Level - MIL-STD-2167A, commercial, etc.

3.) Development Model - Waterfall, Spiral, etc.

4.) Project Scope - rehost, development, maintenance, etc.

Since all of the information requested affects the projected productivity of the development effort, it is crucial that the information gathered be as specific as possible. In addition to the aforementioned information on the program being estimated, the analyst must compile the same information for the analogous historical programs that will be used to develop the price analysis comparison. Furthermore, the actual effort, schedule, and cost (price) to develop the software, by software development phase if possible, should be obtained. With this information the most accurate productivity, schedule, and labor rate metrics can be developed. If the Screening Information Request (SIR) was developed correctly, the Software Development Plan (SDP) Contract Data Requirements List (CDRL) item is an excellent source of historical data. The SDP typically requires a list of previously delivered programs developed by the contractor, with the associated technical and programmatic data. If, however, the SDP is not available, this type of information can and should still be obtained from the contractor in whatever form is available. When collecting historical data, the analyst must ensure that the information is for completed programs because projections of on-going efforts are often mixed in with the list of the contractor’s programs. Since software development is continuously evolving, the analyst should always try to obtain the most recent data available.

It is important to know how the SLOC was counted so that any productivity or effort estimating relationships developed will be valid. There are two main categories of code counting conventions: physical and logical. Counting physical SLOC is accomplished by tallying the number of carriage returns in the source document. Logical SLOC are counted by tallying logical units (for example, an IF-THEN-ELSE statement is considered one logical unit).

The impact of the code counting convention is emphasized in the NCCA Handbook, which referenced two studies. An Institute for Defense Analyses (IDA) study found that on average, physical SLOC produce a code size that is about 20 percent higher than counting the same code using a logical SLOC definition. NASA's Software Engineering Laboratory (SEL) also found wide differences between physical and logical code counts. They found that a FORTRAN program’s ratio of physical lines to logical statements ranged from 2.5 to 5 due to variations in the number of comments. Likewise, Ada programs exhibited a similar ratio of 2.5 to 6 physical lines per logical statement.

Not only is knowing the amount of source code necessary, but knowing the “condition” of the code is also important. NCCA used the term “condition” to describe the composition of the source code (i.e., %new, %reused). Sections 19.2.4 (Technology Insertion) and 19.4.3 (Reused Code) contain additional information concerning reused code. The amount of HOL a program contains is also an important factor to consider. All programming languages, except Assembly language, are defined as HOLs. Analysts should ask for the new and reused SLOC by language so as to avoid having to derive these values.

When using historical software effort data, it is important to consider the level of requirements under which the software was developed. A major program may have several software development efforts spanning different acquisition phases. For example, typical acquisition strategies require development of prototypes and associated software during a Prototype Phase. After a competitive selection process, one contractor's design is chosen for further development. Final development takes place for the deployable software by the winning contractor. The contractor probably reused code from the Prototype Phase that may not have undergone the same level of documentation, testing, or review as software developed for deployment. As a result, using historical prototype data points to estimate effort prior to deployment may not be appropriate without some adjustment.

Therefore, it is recommended that the data shown in Table 19-11 be requested from the offerors (if not already in the SIR) and from the sources of other data/ICE to allow a valid comparison.

Table 19-9. Software Estimate Comparison Parameters

	Data Area
	Description

	Project Application
	What is the software’s functional purpose

	Project Size
	Most commonly in SLOC but could be in Function Points or Object Points

	Size Counting Convention
	Defines what is included in the SLOC/FP/OP count

	Project SW Language
	If coded in more than one language, try to get percentages. As a minimum, know Assembly versus HOL

	Project Phasing
	What phases of the SW development schedule were included in the contract price

	Code Condition
	% new, % modified (need definition e.g., less than 20% recoded), % unmodified, % COTS

	Development Mode
	Embedded versus non-embedded as a minimum

	Specification Type
	MIL-STD-2167A, commercial, etc.

	Development Model
	Waterfall, Spiral, etc.

	Project Scope
	Rehost, development, maintenance, etc.

If as a minimum the information in Table 19-11 is obtained for the proposed project and the item(s) to be used as the basis of comparison (ICE, market survey, similar items, etc.), then there should be good substantiation for the comparison.

Price Analysis Techniques

The FAA AMS Toolbox Guidance T.3.2.3, Section A-3, par. a-f provides the following pricing techniques to use when performing price analysis. The expected contract type that would be appropriate for the tool to be used with is indicated in Parenthesis.

· Comparison of proposed prices with Independent Cost Estimates. (Any type)

· Comparison of proposed prices of competitors received in response to the solicitation. (Competition)

· Comparison of proposed prices received in response to the Screening Information Request (SIR) or Market Survey. (Competition)

· Comparison of prior proposed prices and contract prices with current proposed prices for the same or similar end items and services in comparable quantities. (Sole Source or Cost Plus)

· Comparison with competitive published catalogs or lists, published market prices or commodities, similar indexes, and discount or rebate arrangements. (Sole Source or Cost Plus)

· Application of Software Cost Estimating Model parameters or Rules of Thumb (such as person-months per SLOC, or other units; see section 19.7.5) (AMS used the term “rough yardsticks” for this technique) to highlight significant inconsistencies that warrant additional pricing inquiry. (Sole Source or Cost Plus)

· Ascertaining that the price is set by law or regulation.

Price Analysis Tools

Independent Cost Estimates (Ices)

ICEs are the key estimates required by and for cost and pricing evaluations. This estimate is an assessment of the total cost to be incurred by the offeror if the contract is awarded. ICEs should be developed early in a procurement cycle and be used to determine the reasonableness and completeness of the proposals and to detect buy-ins, unbalanced pricing, and other gaming techniques. Additionally, independent estimates can be used for future budget estimates and procurement planning and decision-making. ICEs may also be complemented by economic analysis and/or cost studies. Without these key elements, structuring of Sections B, L, and M can be difficult. The IPT will determine when an ICE is appropriate. The Contracting Officer may request an ICE prior to issuance of a Screening Information Request (SIR).
The evolution of these estimates progresses as the procurement concept grows. Estimates must be conducive to the pricing evaluation. Too often estimates are done only to support budget or technical trade-offs and cannot be translated to contract line item number (CLIN) and work breakdown structure (WBS) break-outs. In order for the analyst to develop a realistic pricing evaluation, initial estimates must support the development of Section B CLINS and provide evidence of establishing marketable prices that relate to these CLINs.
Comparison with a Similar Item’s Proposal/Price/Cost Estimate

This section is based on a U.S. Air Force Material Command (AFMC) white paper “Methods for Evaluating Similar Items”, dated January 1996. The ability to compare a proposal with a similar item for price analysis presumes the price for that similar item is reasonable and acceptable. The Government might have purchased the item previously on the basis of adequate price competition, catalog or market pricing, commercial item pricing, or negotiations using cost or pricing data. If so, documentation that demonstrates price reasonableness for the item would already be possessed by the Government. Any of these should generate the confidence necessary to support the contention that price analysis will produce a reasonable price. However, it is also possible that the Government may never have purchased the similar item. In that situation, it would be necessary to establish the reasonableness of a similar item’s price before any further price analysis on the offered item could be conducted. It is imperative to determine a suitable basis, else the price analysis would be without merit.

Once comfortable with the reasonableness of the similar item’s price, an understanding of the technical similarities and differences between the offered item and the similar item is necessary. The pertinent characteristics (e.g., size, language, application type, etc. from Table 19-11) of each item must be identified to facilitate comparison.

If a direct comparison is not possible, break down the offered and similar items until a common baseline is reached. It may be as simple as segregating options and upgrades to the same basic, lower-level unit, along with two lists of adders that would complete the items. The automobile industry is the clearest example where this method can be applied. However, the same thing can be done with software, isolating differences such as functionality to leave the same basic operating system and application type. Then, proceed with establishing prices for the baseline unit and each adder.

The most complex, and perhaps most frequent, situation to be encountered, especially for a new development, involves the inability to reach a common, identifiable baseline unit. In this case compare the characteristics of the two items and determine some relationship between them. Examples could be found where similar items might be compared in areas such as size, language, development phases, and specification level. The price of the similar item, having been determined reasonable, is used as the baseline, and the differences between the two items are considered as pluses and minuses to that baseline.

When the procured and similar items are broken down for evaluation, any suitable price analysis tools and techniques may be used to substantiate prices of the segregated pieces. Utilize purchase history or catalog, market, or commercial price assessment as applicable. By closely aligning characteristics into comparable categories, some parametric relationship might be disclosed to explain the impact of a characteristic. Of course, if reasonableness of a portion cannot be established using price analysis techniques, the negotiator should request cost information (cost or pricing data if the threshold is met) on that portion and perform a cost analysis.

The Cost/Price Model

The analyst should plan for the development of a cost/price model. This is not a Cost Estimation Model as discussed in Appendix 19D, but a spreadsheet type model used specifically for cost/price analysis and/or proposal evaluation. When preparing a negotiation position, a cost/price model should consist of spreadsheets for the basic items being negotiated (usually CLINs or WBS elements), summary sheets, and sheets containing backup data (other direct costs, rates etc.). Essentially, all of the elements that are to be analyzed should be represented in the model.

In a competitive procurement it is often useful to provide an automated model with the SIR for direct input by the contractors. This reduces evaluation time and minimizes errors. The construction of the model will depend heavily on the type(s) of contract, CLIN structure, WBS structure, and quantity of data required. The analyst must work closely with the CO and IPT, to assure that mutual goals are met. A technical description and an in-depth explanation of cost/price models are provided in Chapter 3, “Automated Cost Models” of this handbook.

For software procurements, the model can be especially useful since it should contain the input parameter requirements (Table 19-11 as a minimum) needed to compare proposals to the ICE and/or similar items, plus enter data into a Software Cost Estimation Model.

Software Cost Analysis

Cost analysis is the review and evaluation of the separate cost elements and proposed profit/fee of:

· An offeror’s or contractor’s cost or pricing data or information other than cost or pricing data and

· The judgmental factors applied in projecting from the data to the estimated costs.

The purpose of the evaluation is to form an opinion on the degree to which the proposed costs represent what the cost of the contract should be, assuming reasonable economy and efficiency. However, cost analysis does not necessarily provide a picture of what the market is willing to pay for the product involved. For that price analysis is needed.

The cost areas analyzed in a Cost Analysis, each discussed in detail in a separate chapter of the FAA PH, are as follows:

· Direct Labor

· Material

· Other Direct Costs (ODCs)

· Indirect Costs

· Facilities Capital Cost of Money

· Profit/Fee

Common terms used in cost analysis that are applicable to software are contained in Table 19-12 below.

Table 19-10. Cost Analysis Terms and Definitions

	Terms
	Definition

	Basis of Estimate
	A statement of the rationale used by a contractor to generate a cost estimate for a specific task or item to be produced.

	Direct Labor
	Work performed by individuals which is directly related to a specific cost objective. This work is readily identifiable with a particular product or service.

	Indirect Labor
	Work performed by individuals which is not identifiable with a single final cost objective but is identified with two or more final cost objectives or an intermediate cost objective. One example of indirect labor is the work expended by the controller of a company. The controller’s work is not directly identifiable in the production of a specific product or service, since his or her work is spread across several projects or tasks.

	Labor Hour
	The unit of time by which direct labor activity is measured.

	Labor Rate
	The dollar amount paid to an individual per a given amount of time in consideration of work accomplished.

	Labor Cost
	The product (i.e., result) of multiplying labor hours by appropriate labor rates.

	Labor Category
	A grouping of workers with similar skills or expertise.

	Labor Mix
	The combination of functional skills and levels of worker experience required to accomplish a given task.

	Other Direct Costs (ODC)
	Other costs charged directly to the Government that have not been included in proposed material, direct labor, indirect costs, or any other category of cost. ODCs can include but are not limited to: special tooling, travel expenses, relocation expenses, pre-production and start-up costs, packaging and transportation costs, royalties, spoilage and rework, computer expenses, federal excise taxes, and reproduction costs.

Considerations for Software Cost Analysis

In addition to general cost analysis considerations, there are three key considerations that apply to most proposals for a software program. These are the software development productivity, code condition (percent new and reused code) and the software defect rate by program phase.

Productivity

Productivity is a primary indicator of how efficient the contractor is in developing software. Productivity relates software development effort to the organizational capabilities, experience, and individual talents of the team that will perform the software development. This rate should be based upon historical data. The productivity rate tends to remain constant for a given organization, so previous proposals by the same contractor are especially valuable. It is much more difficult to compare rates between different contractors because it is so dependent upon organization and personnel. Productivity is also affected by programming language, processes, specification level and software tools.

Referring to NCCA’s Handbook, two calculations should be made for software development productivity:

1.) Productivity expressed as hours per SLOC based on the following formula:

[image: image2.wmf]SLOC

Total

Hours/PM

152

*

PM

Total

Hours/SLOC

=

2.) Productivity expressed as hours per new SLOC. This metric is important because new SLOC tends to drive the effort.

[image: image3.wmf]SLOC

New

%

*

SLOC

Total

Hours/PM

152

*

PM

Total

SLOC

Hours/New

=

PM = person-months of effort, 152 is assumed to be the average work-hours in a month.

This rate along with the code size usually forms the basis for the software development effort. Therefore, it is important to compare productivity against a Rule of Thumb estimate, other programs and/or the contractors past performance to determine if it reasonable. Then, over the life of the contract, compare the rate from proposal to proposal. The rate does tend to increase (become less efficient) gradually over the life of the contract as additional requirements are made to the program (new code has to be integrated with more and more old code).

Code Condition

Code condition, although mentioned in section 19.7.1 in regards to price analysis, is also important to cost analysis. The proposal should separate the total software development effort by percent of new code, modified code, COTS and unmodified code (see Sections 19.1.2, 19.2.4 (Technology Insertion), and 19.4.3 for more details on the definitions of these terms and Appendix 19E for COTS considerations).

Reused code (modified, unmodified and COTS fall into this category) is included in a program to reduce effort, cost and schedule. According to NASA’s Software Engineering Lab (SEL), “Cost and Schedule Estimation Study Report”, dated Nov 1993, for projects with moderate to low code reuse (less than 70 percent), the post-CDR growth in SLOC due to requirement changes and TBDs is commensurate with past SEL experience: 40 percent. For projects with high code reuse (70 percent or more), the post-CDR growth in SLOC is only about half as much (20 percent). For projects with moderate to low code reuse, the post-CDR growth in schedule is 35 percent. For projects with high reuse, the post-CDR growth in schedule is 5 percent.

As mentioned in Section 19.1.2, once the percentage of modifications in a block of code exceed 20%, it is usually less expensive to write new code. Often contractors are optimistic in the amount of code that can be reused. Monitoring metrics of software program growth (increasing cost and schedule), there are typically two sources of new code increase, requirements growth from the user and less modified/unmodified code than projected by the contractor. As the contractor gets into the process of actually developing the software, typically the task of reusing software becomes more difficult than planned. Therefore it is important to keep track of these percentages over the life of a contract as both indicators of future problems and for cost analysis. Table 19-4 of Section 19.3.1 includes code size as a process effectiveness metric.

Figure 19-10 below is an example of new code growth at the expense of reused code taken from an actual FAA program. Although total SLOC grew only 5% during the 17 month period shown, the amount of new code that had to be developed grew from 59% of the total code to 89%. There was also about 25% schedule growth on this program.

Figure 19-10. Comparison of New Code versus Reused Code

Software Defects

The contractor should indicate in the proposal the number of defects expected to be discovered and fixed for each phase of the program. As discussed in Section 19.6.2, the earlier in the development cycle that a software bug is discovered/detected, the less expensive it will be to fix. The quantity of software defects should be expressed in or converted to a rate since this is how defects are compared across the industry.

[image: image4.wmf]SLOC

Defects

Rate

Defect

SW

=

There should be separate rates calculated by phase using the SW Defect Rate equation for new code and modified code, plus a rate for defects remaining in the existing, unmodified code. These calculations would then become the basis for the effort required for testing/engineering to find and to fix the defects in each phase. Defect metrics can be useful during software cost analysis to aid the analyst in determining if the contractor’s estimated effort for identifying and fixing defects is consistent with the contractor’s/industry’s historical averages.

Figure 19-11 shows a typical trend for detecting software defects based on studies of completed software programs by Musa, Iannino and Okumoto in their book Software Reliablity-Measurement, Prediction, Application. The defects discovered during coding and unit test are usually not formally reported/tracked by the contractor so expect that only the estimates for the phases after Unit Test will be provided in a proposal. Musa et. al., per their study, organized the data to predict the number of defects remaining in the software per KSLOC at the start of each phase. Each defect quantity includes the defects for the remaining phases (6.01 is included in the 19.70). The book indicated that program size (SLOC) was the most important defect prediction factor, with specification change activity, programmer skill level and design documentation thoroughness being the other most significant predictive factors. Defects continue to exist in the software even after site installations are completed that are gradually discovered as changes in software use or hardware occur.

Figure 19-11. Mean Software Defect Rate by Phase

Figure 19-12 below shows a defect prediction curve from a previous FAA software system. The contractor updated the defect prediction curve (top line) at proposal time (based upon 6 defects/KSLOC of new code at the start of system testing for that program) and then tracked the defect detection curve as the program progressed. The points where the top curve stepped up occurred because of increases in program requirements (new SLOC being added). Even though the amount of code increased by steps, notice the discovery rate remained at basically a constant rate because it is proportional to the amount of testing being conducted. Although there will be more defects to be discovered as the amount of code increases, the testers are able to identify defects only so fast. Because this program spanned many years with the same contractor, personnel experience and processes improved overtime so that the defect rate decreased (distance between middle and top lines grew larger).

Figure 19-12. Software Defect Prediction versus Actual Curves
As will be discussed in Section 19.10.3 there are Product Quality metrics that track the defect discovery rate and defect solution (i.e., fixed or closed). These are indicators of backlog and rework effort, as well as the contractor’s process capability in finding and fixing defects, and the potential quality of the software product. The bottom curve of Figure 19-12 shows the number of defects that were fixed. Since the delta of unfixed defects increased, this would normally be an area of concern. For this program, a decision was made near the end of the program to not spend the funds to fix low-priority defects.

The defect rates in the proposal should approximate the trends of Figures 19-11 and 19-12, or this could be an area for further investigation. If the system has significantly more defects than predicted by the industry averages, then the contractor’s software process and quality assurance activities should be looked at. Defect detection and correction tend to drive schedule (and cost) during the system test phase and maintenance costs during operations. According to NRaD’s Manual, the cost of corrective maintenance will depend on the quality of the software. Software that is fielded with a great number of defects will result in a greater number of user generated software trouble reports which in turn could potentially result in high maintenance costs.
Cost Analysis of a Parametric Estimate

Since most software cost estimates and proposal estimates today are based at least in part on parametric models, this section summarizes some points to consider when analyzing a parametric estimate. This section, along with the REVIC (a software cost estimating model based on COCOMO, see appendix 19D for details) example are extended from NASA’s Handbook.

With the proliferation of parametric cost estimating models and tools, both commercial models and “home grown” versions, it is impossible to describe what to look for in every model and cost parameter. However, some generalizations can be made. An analyst confronted with a parametric cost estimate, should take a few steps to ensure a fair review. These are:

· Understand the cost model used. Do not hesitate to ask questions and to consult with the experts. A user’s understanding of the model is not necessary, just a general knowledge about how it works. Appendix 19D and 19E can be of assistance and most commercial model builders welcome calls from users, analysts and auditors.

· Review the program inputs to the model. Is the schedule correct? Does the WBS adequately describe the product being estimated? Is anything missing? Are there duplications? Does the WBS follow the statement of work?

· Review the technical inputs to the model with government engineers or IPT. Check them for reasonableness and benchmark them using the experience of the resident experts.

· Understand the model’s cost drivers. Generally, there are a few select parameters that are the predominant cost estimating factors that drive cost. Many of the others are just “tweaks” to the model. Concentrate on the cost drivers when performing the analysis.

· Be aware of the assumptions the cost estimator made when the model was built. Are they still reasonable for this procurement?

· Be knowledgeable of the historical cost basis for the model, if any. Be sure to review the source documentation. Be wary of any model used that has no basis in historical cost. How was the data “tuned” or normalized? Were data outliers disregarded? If so, why? Was the model calibrated? How was the calibration performed? Were any universal or “standard” cost factors used? Would they be applicable in this case?

· Question how the future environment might be different from the historical case. Have these differences been accounted for?

· Review the track record of the estimator or the estimating organization. What is their past performance? Have their estimates been reliable?

· Understand the economics involved with the model. What are the effective costing rates used? Are they reasonable? Do they reflect the organization and skill levels being estimated? Are the skill levels appropriate for the type of work being performed?

· Identify what cost factors have been “tweaked” and why. Focus on the “big ticket” items. Using expert opinion and “rules of thumb,” are any significant cost factors outside the range of reasonableness? For instance, it is very easy to calibrate a software cost model’s cost (hours or dollars) per line of software code. Is the CER reasonable for the estimate? Since, models may define a software line of code differently, it is important to understand the definitions used in the model being evaluated.

Rules Of Thumb Use in Cost Analysis

Continuing to refer to NASA’s Handbook, rules of thumb are general rules, CER’s or other cost factors that are widely used, but do not apply precisely to a specific case. Each estimating organization will have its own peculiar set. Most long time estimators can develop a rapid estimate (a ROM) based on their own personal rules of thumb. These rules come from their own experience. Examples of rules of thumb are the “default” factors that populate many parametric models including the commercial ones. If no factor input is available, the model uses a universally derived factor - one taken from a universal database or expert opinion.

Although there is nothing wrong with the use of these rules per se, the danger is evident. The rules are only norms or benchmarks, and they will never apply to a specific estimate. Their value lies in the comparison of a factor in a model to the universal case. Too much deviation should be investigated. Why is the actual case so different from the rule or, why doesn’t the rule apply here?

For instance, if the rule of thumb is that a line of software code (for a particular type of software) should take about one-half hour to write (on average), and the parametric model indicates two hours, then some investigation is in order. Although either CER could be the correct one, there is far too much deviation from the norm, and suspicions are aroused. However, if the model indicates six tenths of an hour compared to one-half hour, the rule has performed the “sanity” check. The use of the rule does not preclude a thorough cost analysis, however, if a cost driver has been identified.

Rules of thumb are important, but they must be used wisely. Each analyst should develop his/her own list. This can be accomplished through experience, or by consulting with experts in the field. Many rules exist embedded within commercial parametric models, and are available to the users and modelers. In any event, it is important to have a list of benchmark factors. There will probably be a different list for each organization. Organizational and product differences require it. There are no shortcuts or magic formulas, so use the rules as a quality check, or for quick, rough order of magnitude estimates.

Parametric Cost Analysis Example

What follows is an example of some of the above discussion, based upon an example in NASA’s Handbook. The example here uses the software cost estimating model, REVIC.

The fundamental REVIC equation is: Man Months = A*(KDSI)B*(Fi, where,

· A and B are coefficients of several Software Development Modes (for instance, embedded, organic, Ada);

· KDSI is Thousand Delivered Source Instructions; essentially SLOC,

· Fi is the product of various environmental factors the model uses to adjust the cost estimates. These environmental factors include: analyst and programmer capabilities, applications experience, programming language, storage constraints, requirements volatility, reliability requirements, database size, product complexity, the use of modern programming practices and software tools, platform (airborne, space, etc.), schedule compression, etc. Each factor is given a factor value from very low through nominal to very high.

Suppose the following cost estimate were included in the proposal:

REVIC = IMS EP 1 = 3.312(DSI/1000)1.2 * (Fi

IMS EP 1 = (3.312)(1337/1000)1.2 *.874 = 4.1PM

The basis of estimate (BOE) says this: “The Integrated Management System Evaluation Package for Release 1 (IMS EP 1) requires 1337 new lines of embedded source code of new algorithms and uses complex interfaces. Our superior programming staff using state-of-the-art software tools, modern programming practices, and possessing significant application experience allows the product of the environmental factors to be less (13%) than nominal.” Some observations can be noted about this estimate. First, this particular estimate is relatively small (4.1 person-months). Although there may be more important cost issues, this one is analyzed as a “spot check”. Additional information about REVIC is available in Appendix 19D and E on the Internet. REVIC is available free to government agencies/contractors, so a lot of information is available, including a copy of the model and its user manual. The resident expert can confirm that the technical description in the BOE is correct. That and a comparison with Table 19D-2 indicates that the model’s values for A and B are the correct ones for an embedded system. A quick calculation can compare the estimate with a rule of thumb supplied by the resident expert.

4.1PM * 155hrs./PM (1337DSI = .475hrs/DSI

Lets assume that the resident expert believes this factor to be quite low, possibly two times. He also indicates that the DSI number needs to be verified for accuracy, since it is a major cost driver for this estimate. The environmental factors (EFs) for the model do not appear to have been calibrated except for the vague references “...superior programming staff....” in the BOE. Since the product of all the EFs nominal values equals 1.4 (referring to a copy of REVIC 9.2 program), it would appear that about 75% of the twenty EFs were set to the nominal value. He is also suspicious of the “...less (13%) than nominal” environmental factors product. (Nominal here he believes should equal at least 1.5 due to the type platform involved.) Therefore 13% less appears to be a mistake of some kind (1.4-.874 = .526, or 36%), but it will have to be investigated. He also argues that since this is a competitive proposal that is almost 80% software, all software estimates may be “aggressive,” and should be carefully reviewed.

All these questions could be investigated as part of the analysis. Although this is a relatively easy example, it demonstrates the general idea of what to look for in a parametric estimate.

COTS Special Pricing Considerations

See Appendix 19E for a detailed discussion of the areas that are special and should be considered in pricing a proposal that is for or includes COTS items.

Software Pricing Summary

Pricing is used by procuring officials to establish a “fair and reasonable price”. Price analysis and cost analysis are the two basic techniques used to accomplish this purpose. Price analysis should always be performed. Under certain circumstances, cost analysis also needs to be performed. Price analysis plays the lead role in determining price reasonableness and fairness, and it becomes the responsibility of the analyst to research and gather pricing data from sources other than the contractor. As a result, the analyst must understand the fundamentals of performing price analysis along with the peculiar aspects associated with software cost estimation. In order to conduct software price analysis, the terms for comparing the data must be properly defined. There are three common Pricing Tools normally used for Price Analysis: ICEs, comparison with a similar program and an automated model (spreadsheet). In addition to the general cost analysis considerations, there are three key considerations that apply to most proposals for a software program: software development productivity, code condition (percent new, reused code) and the software defect rate by program phase. The software cost estimation techniques/methods contained in this chapter should provide the analyst with the background required to understand a software program cost estimate and this section provides specific areas on which to focus the software pricing effort.

Model Selection

The purpose of this section is to outline a process that can aid the estimator in selecting the best model for his/her particular needs. With the multitude of software cost and sizing models available, the model user faces the dilemma: “Which model should I use?” In his article “A Common Sense Approach to Software Cost Estimation, ” Daniel Ferens outlines a four step approach to help the user determine the answer to this often perplexing question. The four steps are:

· Determine needs,

· Select candidate models,

· Choose the most appropriate model or models, and

· Reevaluate the choice.

Step 1: Determine Needs

This first step is the most crucial. Several studies have concluded that different models are best for different applications. Therefore, a user must understand his or her unique situation before selecting a model. The user should first write a general statement of the organization’s needs, then attempt to describe the situation in more detail. A “weighted factors approach” as illustrated in Table 19-11 can help a user better define his or her unique situation. Also, accuracy requirements should be defined.

The list of factors and weightings in Table 19-11 reflect the importance of these factors to the user’s organization. They are only presented as an example; the factors and weightings for other organizations will often be quite different.

Also, the listing of factors and assignment of weightings can be subjective. Still, such a listing can provide the user or organization a framework for considering qualitative evaluation factors. When deciding which factors to include, consideration should be given to not only to the use of the model for cost estimating, but also how useful it will be supporting the software pricing process outlined in section 19.7. The data requirements from section are especially important.
Table 19-11. The Weighted Factors Approach

	
	Importance
	Model Ratings
	Factor Products

	Factor
	Rating
	A
	B
	C
	A
	B
	C

	Input Data Availability
	10
	10
	9
	7
	100
	90
	70

	Model Functionality
	9
	10
	6
	7
	90
	54
	63

	Ease of Use
	8
	8
	9
	6
	64
	72
	48

	Ease of Calibration
	6
	2
	5
	5
	12
	30
	30

	Database Validity
	5
	7
	7
	4
	35
	35
	20

	Currency
	5
	3
	5
	5
	15
	25
	25

	Accessibility
	4
	6
	9
	4
	24
	36
	16

	Range of Applicability
	2
	1
	7
	10
	2
	14
	20

	Ease of Modification
	1
	3
	4
	2
	3
	4
	2

	
	
	Weighted Totals
	345
	360
	294

According to the NASA Handbook, the accuracy of the estimates the model provides is dependent upon the input data provided by the user, therefore, input data availability is critical. For government estimators, being able to assess a contractor’s software development personnel capabilities is usually an unknown, especially before contract award. The other cost drivers in the model should be carefully reviewed to determine what data are/will be available to the government.

Major functional capabilities that should be considered when selecting a software estimating tool are listed below. Depending on the organization's needs, the level of significance of these capabilities may differ, and should be considered accordingly. In addition, the organization should analyze their own needs and identify additional desired capabilities specific to them. The organization should then match available tools with overall needs.

In general, the tool should:

· Allow easy adaptation to an organization's development environment. This means the tool needs to be capable of being customized to fit the using organization's development environment. Customization includes allowing the developer to define applicable inputs, as well as to modify coefficients and exponents of the equations used by the tool. This feature will allow continuous improvement to the estimation capability of the tool since the organization's historical data and current project data will be included in the software estimate generated.

· Be relatively easy to learn and use. The tool should be well documented including methodologies and equations used. Documentation should be at a level that is understandable. The tool should include help menus and examples sufficient to assist the support staff in answering questions and providing training. The amount of formal training required to use the tool should be relatively minimal, required inputs should be well defined, and visibility into internal equations and theories should be provided.

· Provide early estimates. The tool should be capable of generating estimates early and quickly in the life cycle process when requirements and development environments are not fully defined. The tool should also allow task detail to be added incrementally as functions, activities, and other information becomes more completely defined. Since there are many unknowns early in the estimating process, the tool should reflect degrees of uncertainty based on the level of detail input (risk analysis). In general, the tool should provide sufficient information to allow initial project resource planning as well as reasonably early "go/no go" decisions.

· Be based on software life cycle phases and activities. The tool should be capable of providing estimates for all phases and activities of the most commonly used software life cycle models. It should allow the organization to decompose and map software development tasks into those phases and activities, as well as support a program WBS. In addition, it should allow for "what if" situations and include factors for design trade-off studies.

· Applicability allows for variations in both application languages and functions. It is very important that the tool provide estimates specific to the application of the software project since the associated estimating equations, cost drivers, and life cycle phases should be unique to each application. General application categories include Information Systems (IS), simulation and modeling systems, real-time systems, accounting systems, and systems based on higher-order languages.

· Provide accurate size estimates. The size of a software development project is a major cost driver in most estimating tools, yet size is one of the most difficult input parameters to estimate accurately. The tool should include the capability to help estimate the size of the software development project, or at least help define a method for estimating the size.

· Provide accurate schedule estimates. As previously mentioned, schedule overruns are common and can be extremely costly. The software estimating tool should be able to provide schedule estimates accurately. The purpose of scheduling is not only to predict task completion given task sequence and available resources, but also to establish starting and ending dates for the associated work packages and life cycle phases.

· Provide maintenance estimates separately. The software estimating tool should be able to provide software maintenance estimates as a separate item.

Step 2: Select Candidate Model

The second step is to select a set of candidate models that meet the needs determined in Step 1. An examination of needs can point out which types of models are most suitable. For size estimation, the user can choose from various categories of models (e.g. analogy, grass roots, expert judgment, or parametric); however, for cost models, the choices will probably be restricted to parametric models as explained in section 19.5.5. Once the category or categories have been identified, candidate models should be selected. For example, the parametric cost models discussed in Appendix 19D should probably be considered, along with any others the user determines may be appropriate.

Step 3: Choose Appropriate Model

The user should perform both qualitative and quantitative (accuracy) assessments of the candidate models selected in Step 2, and choose the best model or models for his or her organization. It is recommended that two models be selected for routine use; one as the primary model and one for cross-checking the results of the primary model. A study by George A. Coggins and Roy C. Russell entitled Software Cost Estimating Models: A Comparative Study of What the Models Estimate showed that cost models, even given “equivalent” inputs, produce significantly different cost and schedule estimates. Their conclusion was that a user should learn one or two models well instead of trying to use several different models. Nevertheless, other models can still be used occasionally, if only for consideration for future use as discussed in Step 4.

To effectively perform this step, the user must become familiar with each of the candidate models. This often involves attending a training course and using the model for several months, if time permits. (A well planned, on-going training program can benefit a cost estimating organization tremendously in terms of knowledge of models.) Once the user becomes sufficiently familiar with the models, the selection process can begin. It is highly desirable that the user does his or her own studies for this process, and not rely solely on outside information. Validation studies performed by outside agencies certainly can help the user in the model selection process. An excellent example is a study by Elizabeth K. Bailey, et al, A Descriptive Evaluation of Automated Software Cost-Estimation Models, which compared and evaluated features of most of the cost models described in Appendix 19D. While outside studies such as this can provide valuable information, the user should employ these studies as supplementary material and not as a substitute for his or her own efforts since they do not reflect the unique facets of the user’s environment.

For quantitative assessments of candidate models, the weighted factors approach shown in Table 19-11 can help. The user assigns a weight to each factor (in Step 1), assigns a rating between “1” and “10” to each model on how well it addresses each factor, multiplies the model and importance ratings, and sums the results. The highest total can indicate the best model (e.g., Model B in Table 19-11); however, other models that are close (e.g., Model A in Table 19-13) should be scrutinized further. Since there is some subjectivity in this process, small differences may be negligible. Again, while the weighted factors approach is somewhat subjective, it can help a user consider what is important in model selection and quantify the rating process.

For qualitative assessments, or determining whether the models meet accuracy requirements, the user should calibrate the models, then run the models against projects for which the user has historical data and which were not used in calibration. An example is Ourada’s study performed on military ground programs with the REVIC model for an early version of the Air Force Space and Missiles Center database. For the 28 military ground programs, Ourada calibrated REVIC using 14 programs (selected at random), then ran the calibrated model against the other 14 programs to assess probable accuracy for other military ground programs outside the database. This approach is often arduous, but is essential if a user truly wishes to determine which model is most suitable from an accuracy standpoint.

Step 4: Reevaluate Model Choice

User needs and models change over time. Many commercial models such as PRICE-S and SEER-SEM are updated every year, and major refinements occur every few years. New models occasionally appear and may merely fade away, or they may become widely used, or may be more suitable than current models. Therefore, a user should reevaluate his or her selection every few years. There is no reason to be “married” to a particular model or models for life unless they continue to be the best available.

Model Selection Summary

In summary, the four-step approach presented here can be an invaluable aid to a user in model selection, especially when the choice is not dictated by those in higher authority. The most crucial step is the first, needs determination; all other steps hinge on the success of the first step. The four-step approach is sometimes laborious, but the benefits of improved estimating can make it worthwhile.

Intelligent Use of Models

As discussed earlier, there is a plethora of software cost and size models available, many of which are very sophisticated. This may lull a manager into an over dependence on models for estimation. According to Robert E. Park, in his article “An Open Letter to Cost Model Evaluators,” some managers apparently believe that “models, not estimators, are responsible for estimates”. Software models, however, are not magic boxes; they are only as good as the input data used. Also, models inherently have limitations. Furthermore, models are not always useful in analyzing non-cost factors in decision making. The manager, therefore, must recognize the capabilities and limitations of models and use them intelligently. Some of these limitations are now discussed.

Input Data

The problem of the instability of parametric models, as described by Boehm, is exacerbated by the sensitivity of effort and schedule to changes in input parameters. For example, in most cost models, changes in program size will result in at least an equivalent percentage change in cost or effort. Some inputs have even more dramatic effects. For example, changing personnel capability (analyst and programmer) in COCOMO or REVIC from “very high” to “very low” will result in a 300% increase in effort required. In SEER-SEM, changing security requirements from the lowest to the highest rating will have a similar effect. In PRICE-S, changing the Productivity Factor by 0.1 can result in a 20% change in effort. All models have one or more inputs for which small changes will result in large changes in effort and, perhaps, schedule.

The input data problem is further compounded in that some inputs are difficult to obtain, especially early in a program. As discussed in section 19.4, size must be estimated early in a program using one or more sizing models. These models usually have not been validated for a wide range of projects. Some sensitive inputs, such as analyst and programmer capability, are subjective and often difficult to determine. Studies like one performed by Brent L. Barber, Investigative Search of Quality Historical Software Support Cost Data and Software Support Cost-Related Data, show that personnel parameter data are difficult to collect. Figure 19-13, extended from the SEER-SEM User’s Manual shows the relative impact on cost/effort of the different input parameters for that model. Even “objective” inputs like Security Requirements in SEER-SEM may be difficult to confirm early in a program, and later changes may result in substantially different cost and schedule estimates. Some sensitive inputs such as the PRICE-S Productivity Factor and the SLIM PI should be calibrated from past data. If data are not available, or if consistent values of these parameters cannot be calibrated, the model’s usefulness may be questionable.

Figure 19-13. Example of Relative Cost Driver Impacts

Error! Not a valid link.
A special problem confronts Government managers who must obtain input data from contractors. First of all the Government manager should include a data collection form in the contractual requirements. The recommended minimum input data requirements are shown in Table 19-11 in the software pricing section. However, an analyst may be tempted to run a model using the data provided on the form. This will merely result in a duplication of the contractor’s inputs and proposed cost. A better use of this data would be as a “starting point” to conduct further discussions with the person or group who filled out the form. The form should be as generic as possible so as to collect the type of data needed for a variety of models, not just a specific model. Of course, if the model is known, then a specific input form makes sense. An example of a generic form is the data form included in the Space and Missiles Center Software Database User's Manual. A potential drawback to such generic forms is that they tend to be lengthy and cumbersome to complete and use.

Model Accuracy

Even if “perfect” input data were available, models may not produce accurate results. Studies have compared model estimates with "known" input data and actual cost and schedule information, and have not found model accuracy to be scintillating. For example, a 1989 study performed by ITT Research Institute for eight Ada programs, Test Case Study: Evaluating the Cost of Ada Software Development, showed that the most accurate models for that type of application (SoftCost-Ada and SASET) were accurate to within 30% of actual costs only 57% of the time. The Ourada study showed even worse results for SEER-SEM, SASET, and REVIC for the 28 military ground programs in an early edition of the Space and Missiles Center database. One limitation of these results is that the models were not calibrated. One of the SEI software cost estimating requisites is that cost models be calibrated/tuned to reflect demonstrated accomplishments on past projects.

Calibration can and does improve model accuracy. A 1981 study by Robert Thibodeau entitled An Evaluation of Software Cost Estimating Models showed that calibration could improve model accuracy by up to 400%. However, the average accuracy was still only 30% for an early version of SLIM and 25% for an early version of PRICE-S. Furthermore, this accuracy was only demonstrated for certain types of programs. Likewise, the ITT Research Institute study showed that the accuracy of PRICE-S and System-3 (a forerunner of SEER-SEM) improved with calibration, but only to within 30%, 62% of the time. For development cost or effort estimation, therefore, a manager probably cannot expect the models to be accurate for budgetary purposes (i.e., within 10%), at least for new programs.

Software maintenance cost accuracy is in an even worse state. An Air Force study performed by Ferens in 1983 and published in the ISPA Journal of Parametrics, concluded that no software support cost models could be shown to be accurate. Unfortunately, the results of that study have never been refuted. Maintenance cost estimating is further complicated in that traditional estimating practices do not always apply. For example, most models estimate cost (or effort) and schedule given some measure of the work to be done (such as program size). In the block change process used by the Air Force in supporting weapons software, however, the time and number of personnel are fixed, and the amount of work that can be done within those constraints must be estimated. Most cost models cannot address this situation (although the latest editions of SoftCost-OO and SEER-SEM may be useful). The software support estimation problem is further convoluted by lack of quality software support cost data for model development, calibration, and validation.

Even if models can be shown to be accurate, another effect must be considered. According to Tarek Abdel-Hamid and Stuart E. Madnick in their book Software Project Dynamics: An Integrated Approach, “a different estimate creates a different project.” What a cost model predicts may dictate how a project is managed. For example, if a model predicts an unrealistically high effort and schedule for a program, and management uses the model results to plan and manage the program, then it may actually take longer and cost more than necessary. Abdel-Hamid shows that the use of a “safety factor” (analogous to management reserve) of 25% to 50% in software estimates will result in 15% to 35% increases in actual person-months.

Model Calibration

The general requirements and procedures for calibrating and validating a cost model are the same for software cost models. This section provides additional details regarding the software cost model calibration process.

NASA’s Handbook defines calibration as the process of determining the deviation from a standard in order to compute the correction factors. For cost estimating models, the standard is considered historical actual costs. The calibration procedure is theoretically very simple. It is simply running the model with normal inputs (known parameters such as software lines of code) against items for which the actual cost is known. These estimates are then compared with the actual costs and the average deviation becomes a correction factor for the model. In essence, the calibration factor obtained is really good only for the type of inputs that were used in the calibration runs. For a general total model calibration, a wide range of components with actual costs need to be used. Better yet, numerous calibrations should be performed with different types of components in order to obtain a set of calibration factors for the various possible expected estimating situations. For instance, the PRICE Software Model addresses this situation using internal productivity factors. These can be modified by the calibration process.

According to SEI, organizations that acquire software intensive systems should have a corporate memory or historical database and a process for calibrating their cost models to reflect demonstrated performance of similar past projects.

The act of calibration standardizes a model. Many models are developed for specific situations and are, by definition, calibrated to that situation. Such models usually are not useful outside of their particular environment. However, general cost estimating models including commercially available ones such as the PRICE and SEER models (described in Appendix 19D) are designed to be useful as estimating tools for a wide range of situations. The act of calibration is needed to increase the accuracy of one of these general models by making it temporarily a specific model for whatever product it has been calibrated. Calibration is in a sense customizing a generic model.

Items which can be calibrated in a model are: product types, operating environments, labor rates and factors, various relationships between functional cost items, and even the method of accounting used by a contractor. All general models should be standardized (i.e. calibrated).

Using historical data as a basis for customizing or calibrating a tool is essential. Insure that information for current project development efforts are saved for future reference. At a very minimum, use software life cycle model phases and activities as a basis for collecting and maintaining project envelopment information for future tool use. Once calibration of the model is completed, model validation in accordance with FAA CEH, chapter 12, section 12.4.2
 is necessary to establish the model’s accuracy.

 Software Project Tracking And Measurement

Once an estimate has been completed and a project started, it is imperative that a reporting and measurement system be established to compare estimated and actual cost, schedule, and performance. Such a system will not only be invaluable for project management, but also can provide the data necessary for model calibration. SEI suggests that an organization have data collection and feedback processes that foster capturing and correctly interpreting data from work performed and entering them into an historical database in order to develop reliable cost estimates.

Unfortunately, past endeavors in this area have not generally been successful; either the data was not collected or the data collected was inadequate or misleading. To effectively track and manage software programs, suitable metrics must be selected, and adequate data collection procedures must be established. This section discusses which metrics may be suitable for software management and the requirements for an effective data collection procedure. The purpose of this section is to provide a short overview of the subject to highlight the importance of this area. There are many handbooks and manuals that cover cost, performance and quality tracking metrics in depth. One excellent reference is DoD’s Joint Logistics Commanders handbook Practical Software Measurement: A Guide to Objective Program Insight (available for download at www.psmsc.com).

Cost and Schedule Tracking

A basic system for tracking costs is necessary for effective software management. One such system which is used widely in Government agencies (DoD, IRS, NASA) is an earned value management system (EVMS). Figure 19-14 illustrates the basic terms used in an EVMS.

Figure 19-14. Basic Earned Value Terminology

Error! Not a valid link.
In the beginning of a program, a manager determines the total program dollars available (BAC) and a time phased expenditure profile (BCWS), which considers both the amount to be spent during each period (e.g., monthly) and the amount of work to be accomplished during that period. The time phased plan is expressed in the common denominator of dollars, but represents work scheduled to be accomplished by those dollars. This can be determined with the aid of one of the cost models discussed in Appendix 19D. Most of the software cost estimating models generate monthly schedule and resource usage profiles. The BAC is not usually equal to the TAB; the manager usually sets aside some money for management reserve that is used to cover risk and uncertainty.

As the program progresses, the manager also tracks ACWP, which is the actual amount spent on the program, and BCWP, which is the value of the work actually performed or “earned value”. To determine how well the program is progressing compared to what was planned, the manager computes a cost and schedule

variance at the end of each reporting period using the following formulas:

% Cost Variance = 100 * (BCWP - ACWP) / BCWP

% Schedule Variance = 100 * (BCWP - BCWS) / BCWS

Negative variances are an indication of problems with the program, especially if they are large. In the DoD environment, it is frequently mandated that the contractor explain variances greater than 10% to the managing DoD agency, including what action is planned to alleviate the cost and schedule problems.

There are two challenges to using earned value for software. One is that, to be effective, data must be reported down to at least the CSCI level! If a CSCI is an entity that is managed separately, then it must be tracked separately. Unfortunately, many government projects in the past did not track costs to the CSCI level; therefore, the actual cost of these CSCIs is still unknown. Furthermore, cost and schedule overruns have been the hallmark of government software programs. Perhaps this situation would have been alleviated if an earned value management system had been used at the CSCI level to demonstrate problems early in a program where they are easier and much less costly to correct. The second challenge is in measuring work performed: How can a manager assess earned value for software programs? Most of the remainder of this section discusses metrics that can be useful with performance measurement systems to help assess earned value.

Performance Measurement Indicators

Performance measurement indicators are metrics which help measure performance, or work performed, in contrast to quality metrics which are discussed later. For all metrics, there is currently a plethora of books and articles; however, there is not an abundance of standardization or agreement among writings. Some of these articles are listed in the chapter list of references. The Software Engineering Institute also has published a Software Measurement Guidebook [CMU/SEI-97-SR-019] that provides tracking and monitoring methods to evaluate status and earned value for projects. It is up to the manager responsible to independently determine a set of appropriate metrics for his or her program.

In selecting metrics, a manager should first consider what constitutes a "good" metric. Several writers have proposed general criteria for “good” metrics. For example, Tom DeMarco, in his book Controlling Software Projects, states that metrics should be measurable, or quantifiable; independent from influence by project personnel; accountable, in that data can be collected; and precise, in that the degree of exactness can be specified. Watts S. Humphrey, in Managing the Software Process, states that metrics should be objective (versus subjective), explicit (versus derived), absolute (versus relative), and dynamic (versus static). Capers Jones categorizes metrics as hard, soft, and normalized. Hard metrics can be quantified with little subjectivity; soft metrics require human judgment; and normalized metrics are hard metrics which should only be used for comparison and not for absolute measures. Hard metrics, of course, are most desirable, but programs may require some soft or normalized metrics. In their article “Using Earned Value for Performance Measurement on Software Development Projects,” David S. Christensen and Daniel V. Ferens have proposed a list of metrics criteria, partly based on surveys of program managers at the Air Force’s Aeronautical Systems Center. Their research was based on the thesis of Bradley J. Ayres and William M. Rock entitled Development of a Standard Set of Software Indicators for Aeronautical Systems Center. The criteria for metrics include explicit, absolute, and objective, as discussed above. Two other criteria are that the metric be timely, or available early in a program; and relevant, or appropriate for the specific program being measured.

The surveys by Ayres and Rock identified relevance as the key criterion for a metric. The next challenge for a manager, therefore, is to determine which metrics are most relevant for his or her program. Again, the 1992 study by Ayres and Rock identified a set of metrics which were most relevant for Aeronautical Systems Center programs. Christensen and Ferens refined the list of metrics and determined their suitability for use in earned value programs. The seven metrics and their roles in earned value management are explained in the text that follows. Table 19-12 summarizes how well they meet the criteria as a qualitative metric.

Table 19-12. Summary of Metrics and Qualities

	
	Quality

	Metric
	Relevant
	Explicit
	Objective
	Absolute
	Timely
	Independent

	Requirements and Design Progress
	Yes
	Yes
	Somewhat
	Yes
	Yes
	Somewhat

	Code and Test Progress
	Yes
	Yes
	Somewhat
	Yes
	No
	Somewhat

	Person-Months of Effort
	Yes
	Somewhat
	Yes
	Yes
	Yes
	Somewhat

	Program Size
	Yes
	Somewhat
	Yes
	Yes
	Yes
	Somewhat

	Computer Resource Utilization
	Yes
	No
	Somewhat
	Yes
	Some-what
	Yes

	Requirements Stability
	Yes
	Yes
	Yes
	Somewhat
	Yes
	Yes

	Design Stability
	Yes
	Yes
	Somewhat
	Somewhat
	No
	Yes

Requirements and Design Progress
This metric illustrates the number of CSCI requirements delineated during requirements analysis and preliminary design. The requirements are described in two documents: the Software Requirements Specification (SRS) and the Software Design Document (SDD). The planned requirements can be used for laying out a software development plan. As the CSCIs are written, they can be used as metrics to show progress in the development effort. For instance, if there are 100 CSCIs of approximately the same size planned to accomplish a certain requirement, the budget can be divided among those CSCIs. Progress would be measured by earning the value of that CSCI as it is written. This metric can be complicated because the total requirements may change during a program, and counting “completed” requirements can be difficult. If these limitations can be overcome, this metric is very valuable in assessing progress and demonstrating any problems early in a program.

Code and Test Progress
This metric illustrates the number of computer software units (CSUs) that have successfully been designed, coded and tested. This information is available from software development files or similar documentation. As in the requirements and design progress metric, planned and actual CSUs can be used to plan and measure progress. This metric is usually easier to assess than the requirements and design progress metric, but is not available until later in the program.

Person-months of Effort
This metric compares planned and actual person-months expended for a project and is useful in computing actual costs. It can also be useful in assessing overall program health, since using too many people for a project can result in cost overruns, while using too few can result in schedule slippage.

Program Size
This metric tracks the total size of the program (in either SLOC or function points), and the percentages of code that are new, reused, or modified. Since there is a direct relationship between size and effort, this metric may be helpful in assessing cost variances. For instance, if the SLOC are higher at a given point than were initially projected, this could help explain a cost overrun. However, this metric has drawbacks as a progress measurement tool since it lends itself to misuse because programmers can write additional code to feign progress; thus the false impression that progress is occurring is given. Another problem with using program size is that, early in a program, size must be estimated with one of the techniques discussed in section 19.4, which may not be very accurate. Therefore, using it to measure progress or even plan work is a questionable practice. For this purpose, it is best to use program size as a technical parameter to investigate cost variances based on other metrics. On the other hand, for pricing purposes, tracking program size is important to insure that current and projected size are consistent with the proposed level of effort.

Computer Resources Utilization
This metric is a measure of computer memory, timing, and input/output (I/O) channel capacity consumed by the software. It is closely related to the software size metric in that increases in size will result in increases in capacities used. Like size, this metric can be useful throughout the program to analyze cost and schedule variances. Additionally, it can help a manager perform hardware-software trade-off studies early in a program.

Requirements Stability
This metric is related to requirements and design progress. It tracks total requirements and the number of changes (additions, deletions, and modifications) to requirements. Numerous or frequent changes will result in additional effort consumed with no indication of progress; therefore, this metric can explain unfavorable cost and schedule variances.

Design Stability
This metric is similar to requirements stability and is related to code and test progress. It tracks total CSUs and the number of changes. Frequent changes result in additional effort consumed; therefore, this metric, like requirements stability, can help explain unfavorable variances. Like code and test progress, a limitation of this metric is that it is not useful until later in a program.

These seven metrics are not the only metrics available for performance measurement. According to Lloyd K. Mosemann in his paper Guidelines for Successful Acquisition and Management of Software Intensive Systems, document completion can be used in determining whether milestones have been met. According to Ferens and Mark T. Hunter in their article “Use of Cost plus Award Fee Contracts for Software Development Efforts”, some performance metrics can also be useful in assessing award fees for cost-plus-award fee contracts. Among them are the ones discussed above, along with compliance with development plans and number of change reports successfully resolved. As stated earlier, a manager must determine the best metrics for his or her program; however, the set of seven discussed above is a useful starting point.

Software Quality Metrics

In addition to measuring performance, a manager frequently wants to measure the quality of a program. There are many metrics that can help a manager in these endeavors. Quality metrics can also be used with performance indicators to assess causes of cost and schedule variances. Several general categories of quality metrics and examples in each category are now discussed.

Defect Metrics
Several cost models, including PRICE-S, SEER-SEM, SLIM, and CHECKPOINT, estimate defects in addition to software cost and schedule. SLIM and CHECKPOINT are especially sophisticated in this area; they provide defect estimates for the entire life cycle of a software program. If the predictions of these models can be trusted, a manager can use defect metrics to compare estimated and actual defects. Also, some organizations such as the Air Force require that defect information be collected. Although often associated with coded products, defect metrics can also be used during requirements and design to measure errors in documentation or other products generated during these phases.

One method of collecting defect information, as described by Mosemann, is to track not only the total number of defects, but also the number of defects open and closed, in order to assess how well an organization is correcting problems. According to Jones, it is also useful to track the “bad fix rate”, the portion of fixes that either do not correct the problem or result in a problem somewhere else in the program or system. Other useful defect measures, according to Jones and Putnam, include defect severity levels and causes, defect distribution among modules (CSCs and CSUs), and defect removal efficiency, which may be assessed from the number of total and closed defects. As mentioned in section 19.7.5, defect metrics can be useful during software cost analysis to help the analyst determine whether the contractor’s estimated effort for identifying and fixing defects is consistent with the contractor’s/industry’s historical averages.
Complexity Metrics
These metrics measure the relative complexity of a program and can be useful in discovering problem areas. An example of complexity metrics, developed by Thomas J. McCabe and G. Gordon Schulmeyer is discussed in their paper “System Testing Aided By Structural Analysis.” Such metrics measure the number of independent paths in a program or module, with “essential complexity” adjusted for use of structured coding techniques such as case or do-while statements. Lower McCabe’s values indicate simpler design and, hence, less effort. Other complexity metrics, according to Jones, include Haistead’s metrics, logical complexity, and design entropy, which is the tendency of the design to deteriorate when changes are made. One advantage of complexity metrics is that they are sometimes available relatively early in a program.

Module Metrics
These metrics measure properties of individual modules, such as CSCs or CSUs, and are useful during the design phases of a program. According to Roger S. Pressman in his book Software Engineering: A Practitioner's Approach, two useful module metrics are degree of cohesion and degree of coupling. Cohesion measures the internal strength of a module; and higher ratings (such as functional cohesion) are better. Coupling measures the degree of dependence on other modules, and lower ratings (such as no coupling or simple data coupling) are better. Another useful measure is span of control, or the number of modules directly under the control of one module. Values ranging from five to nine are usually desirable.

Testing Metrics
In addition to defect measures collected during testing, some other testing measures can be useful. Some testing metrics are also useful in performance measurement. Breadth of testing, or percentage of requirements demonstrated, and depth of testing can help a manager determine the confidence level he or she can place in a product. Test sufficiency, or an estimate of the number of errors remaining in a program, can be useful, but is often difficult to estimate. Seeded error discovery is a technique where an engineer independently inserts errors into a program that are supposedly representative of the types of errors expected. A measure is taken of the number of unseeded and seeded errors discovered; this measure can be used to determine total errors and testing efficiency. It can be problematic, however, in that seeded errors do not always match the types of errors that actually do occur. Also, the developer must insure the final product is not released with seeded errors still present!

Product and Operational Metrics
Although they are not available until the end of program development, product metrics are useful to a customer to assess the quality of the developed product. One example is adequacy of documentation, especially for final product documents such as the Software Product Specification or the User’s Manual. Another is the number of known problems remaining; software is often delivered with known problems (although this is highly undesirable). A related metric is product reliability, either measured in error count (e.g., number of defects per thousand SLOC) or mean-time-to-defect (MTTD), a software equivalent of the hardware mean-time-between-failure measure.

When the software is operational, defects and MTTD should be continually tracked for quality assessment. Also, time to correct errors and availability can be useful measures. Finally, according to David P. Youll in his book Making Software Development Visible, the number of user problem reports can be a beneficial indicator of software quality. Youll recommends tracking the number and frequency of problem reports as well as the cause, severity, and time to correct problems.

Data Collection

Selection of metrics for a program is of little use if there is no way to collect the data for them. Therefore, an effective data collection system must be established. According to Humphrey, an effective data collection system, like software development, must begin with a plan and have specific objectives. The objectives of data collection can include understanding of a process, evaluation of a program, control of a program, or prediction of future trends and events. The data collection plan must have management support and the data collection procedures developed must consider the impact on the entire organization. Since data collection is an added expense in dollars and personnel time, the support of management is essential. Meanwhile, support by people actually collecting the data is also necessary, or they will perform a minimal effort and the data will probably be of questionable validity.

According to Putnam, effective data collection requires that data be collected at regular intervals, be used to measure “actuals”, and compare estimates and actuals to assess deviations (in other words, employ a performance measurement system). Also, a commitment to investigate deviations and act upon results is essential. The data collection itself can be augmented by some of the myriad of automated tools currently available. Taking action, however, is still a personnel issue for which there is no automation.

Data collection requirements can be placed in the contract. Before this is accomplished, the agency must determine what metrics are to be used. For the Air Force, there is currently a policy that requires that certain "core" metrics be collected, and recommends several others be collected. Sometimes these can be negotiated with the developing contractor. Again, it is tantamount that software data be collected to at least the CSCI level!

One additional benefit of data collection is that information for model calibration can be obtained. Currently, the Air Force’s Space and Missiles Center is managing a large database of over 2,500 programs with historical size, effort, and other data that can be used in model calibration and validation. Since all model developers recommend calibration of their cost models to an organization’s peculiar environment, efforts to collect calibration data should be actively pursued.

Software Tracking and Measurement Summary

To effectively manage a software effort, a manager must collect relevant data to at least the CSCI level. Fortunately, there is a profusion of metrics available for software tracking and measurement. Unfortunately, there are few standardized lists of metrics available that cover a broad range of applications. The manager must select from the many available metrics that are most suitable for his or her program. Additionally, a manager must establish a viable data collection system that is supported by management and by the personnel responsible for collecting the data. Data for model calibration should be considered in software data collection efforts.

Summary

This chapter was written to provide the FAA analyst with an introduction to the basic concepts of software cost estimating/pricing. In other words, this chapter is a starting point in the very specialized and involved field of software cost estimating/pricing. Before an analyst attempts to review a FAA software cost estimate by applying the techniques or models discussed herein, two words of caution: GET HELP! As was shown in the chapter, even experts in this field, using the most sophisticated techniques and metrics, along with a model calibrated to the organization developing the software, can accomplish an estimate that does not accurately predict the actual cost of a software development program.

Figure 19-15, extended from Boehm’s book Software Engineering Economics indicates that the accuracy of the software cost/size estimate creates a great degree of uncertainty in the early stages of a program. This is because one may not know the specific nature of the product to be developed to better than a factor of 4. As the life cycle proceeds, and product decisions are made, the estimate becomes increasingly more accurate because the nature of the products and its consequent size are better known, and the nature of the process and its consequent cost drivers are better known.

Figure 19-15. Accuracy of Cost Estimate versus Development Phase

Error! Not a valid link.
This chapter has discussed the software estimating process and the various methodologies used in software estimation. The basic software estimating functional capabilities were also discussed. A review of product literature and user manuals indicates that many tools will perform most of the functional capabilities outlined in this chapter. The user must be able to customize the software estimating tool to their own software development environment. This requires collecting historical data from past completed projects to calibrate the software tool.

The use of two or more software estimating tools using different methodologies is recommended. The user should select a primary tool for software estimating and an alternate tool for comparison and validation. These tools should be used throughout the software development process. Parametric tools are considered to be the best for software estimating for the following reasons:

· Equations are based on previous historical development projects.

· Outputs are repeatable and formulas can be analyzed.

· They can be customized to fit the user's environment.

· They require minimal time and effort to use.

· They are particularly useful in earlier phases of software development.

Assistance can be obtained in several ways. First and foremost, soliciting the guidance of cost estimators and engineers who have previous experience with software cost estimating/pricing and software cost estimating tools is critical. Their expertise can help the analyst in reviewing the estimate and often may be able to provide data from similar historical programs. Second, once a commercially available software model has been selected, enlist the services of their technical staff to ensure the model is used properly. Also, software companies generally offer classes on how best to use their model. The classes can vary in duration from a day long seminar to a couple of weeks at their facility. And finally, the analyst can do some reading on his or her own. This chapter referenced many good sources to allow the analyst to develop a working knowledge of the software cost estimating/pricing discipline.

Price analysis now plays the lead role in determining price reasonableness and fairness, and the responsibilities of the analyst include researching and gathering pricing data from sources other than the contractor. As a result, the analyst must understand the fundamentals of performing price analysis along with the peculiar aspects associated with software cost estimation. In order to conduct software price analysis, the terms for comparing the data must be properly defined. It is also important to understand the special considerations for integrating COTS components into a software system especially as they relate to software cost estimation and pricing.
Finally, according to SEI, there are six institutional process requisites that organizations in the business of building or acquiring software-intensive systems must possess if they are to consistently produce reliable cost estimates. These requisites are:

· A corporate memory, or historical database(s), for cataloging cost estimates, revisions, reasons for revisions, actuals, and other descriptive information, such as any constraints or trends that affect the project;

· Structured processes for estimating software size and the amount and complexity of existing software that can be reused;

· Cost models calibrated/tuned to reflect demonstrated accomplishments on similar past projects;

· Audit trails that record and explain the values used as cost model inputs;

· Processes for dealing with externally imposed cost or schedule constraints in order to ensure the integrity of the estimating process; and

· Data collection and feedback processes that foster capturing and correctly interpreting data from work performed.

19A. Acronyms

4GL: Fourth Generation Language

ACEIT: Automated Cost Estimating Integrated Tools

ACWP: Actual Cost of Work Performed

AMS: Acquisition Management System

BCWP: Budgeted Cost of Work Performed

BCWS : Budgeted Cost of Work Scheduled

BFP: Basic Feature Point

CDRL: Contract Data Requirements List

CDR: Critical Design Review

CER: Cost Estimating Relationship

CMM: Capability Maturity Model

CO: Contracting Officer

COCOMO: COnstruction COst Model

COCOTS: COnstruction COTS

COTS: Commercial-off-the Shelf

CPM: Critical Path Method

C/SCSC: Costs/Schedule Control System Criteria

CSC: Computer Software Component

CSCI: Computer Software Configuration Item

CSU: Computer Software Unit

DDE: Dynamic Data Exchange

DoD: Department of Defense

EA: Evolutionary Acquisition

EI: External Inputs

EIF: External Interfaces

EO: External Outputs

EQ: External Inquiries

EVMS: Earned Value Management System

FAA CEH: FAA Cost Estimating Handbook

FAA PH: FAA Pricing Handbook

FAQ: Frequently Asked Questions

FCA: Functional Configuration Audit

FPA: Function Point Analysis

FPC: Function Point Count

FPH: FAA Pricing Handbook

GAO: U.S. General Accounting Office

GUI: Graphical User Interface

HWCI: Hardware Configuration item

HOL: Higher Order Language

ICE: Independent Cost Estimate

IEEE: Institute of Electrical and Electronics Engineers

IFPUG: International Function Point User's Group

ILF: Internal Files

IRS: Interface Requirement Specification

IS: Information System

KDSI: Thousands Delivered Source Instructions

LAN: Local Area Network

LCC: Life Cycle Cost

MTTD: Mean-Time-To-Detect

NASA: National Aeronautics and Space Administration

NCCA: Naval Center for Cost Analysis

NRaD
: United States Navy’s Naval Command, Control, Surveillance Center, RDT&E Division, Software Engineering Process Office

OLE: Object Linking and Embedding

OO: Object Oriented

OOA: Object Oriented Analysis

OOD: Object Oriented Design

O&M: Operations and Maintenance

PC: Personal Computer

PCA: Physical Configuration Audit

PERT: Program Evaluation and Review Technique

RAM: Random Access Memory

REVIC: Revised Enhanced Version of Intermediate COCOMO

SASET: Software Architecture, Sizing, and Estimating Tool

SDD: Software Design Document

SDP: Software Development Plan

SDR: Software Design Review

SEER-SEM: System Evaluation and Estimation of Resources Software Estimating Model

SEF: Software Estimation File

SEI: Software Engineering Institute

SER: Size Estimating Relationship

SIR: Screening Information Request

SLIM: Software Life Cycle Model

SLOC: Source Lines of Code

SRR: Systems Requirements Review

SRS: Software Requirements Specification

SSCAG: Space Systems Cost Analysis Group

SSR: Software Specification Review

SSS: System Segment Specification

STSC: Software Technology Support Center

VHOL: Very High Order Language

WBS: Work Breakdown Structure

19B. Software Cost Estimation Terminology

Actual Cost of Work Performed (ACWP): The actual direct costs incurred on a project at any given time.
Algorithmic Models (also known as parametric models): produce a cost estimate using one or more mathematical algorithms using a number of variables considered to be the major cost drivers. These models estimate effort or cost based primarily on the hardware/software size, and other productivity factors known as cost driver attributes.

Analogy: A method of estimating developed on the basis of similarities between two or more programs, systems, items etc.

Analogy (or Comparative) Models: Models that use a method of estimating that compares a proposed project with one or more similar and completed projects where costs and schedules are known. Then, extrapolating from the actual costs of completed projects, the model(s) estimates the cost of a proposed project.

Annual Change Traffic (ACT): The fraction of a software product's source instructions which undergoes change during a year, either through addition or modification. The ACT is the quantity used to determine the product size for software maintenance effort estimation.

Baseline: An established, fixed version of the project plan against which actual implementation of the project is measured.

Bottoms-Up (Engineering Estimate or Grass Roots) Models: A method of estimation that estimates each component of the project separately, and the results are combined ("rolled up") to produce an estimate of the entire project.

Budgeted Cost of Work Performed (BCWP) (Earned Value): The total value of work performed at any given time.

Budgeted Cost of Work Scheduled (BCWS) (Budgeted Cost To-Date): The total budgeted cost for work scheduled to be completed at any given time.

Calibration: A technique used to allow application of a general cost model to a specific set of data. This is accomplished by calculating adjustment factor(s) to compensate for differences between the referenced historical costs and the costs predicted by the cost model using default values.

Computer-Aided Software Engineering (CASE): Identifies a sector of the computer software industry concerned with producing software development environments and tools. The main components of a CASE product are individual tools that aid the software developer or project manager during one or more phases of software development (or maintenance). Other features are a common user interface; interoperability of tools; and a repository or encyclopedia to provide a common tool base and central project database. CASE may also provide for code generation.

Computer Software Component (CSC): Since CSCIs may contain over 100,000 lines of code, they are further partitioned into computer software components (CSCs) and computer software units (CSUs).
Computer Software Configuration Item (CSCI): An aggregation of computer software that satisfies an end-use function and is designated for configuration management. A CSCI may be broken down into CSCs and/or CSUs.

Computer Software Unit (CSU): The lowest level in a breakdown of a software product.

COnstructive COst MOdel (COCOMO): A software cost estimation model developed by Barry Boehm and is described in his book, Software Engineering Economics.

Cost Analysis: The review and evaluation of the separate cost elements and proposed profit of (a) an offeror’s or contractor’s cost or pricing data and (b) the judgmental factors applied in projecting from the data to the estimated costs in order to form an opinion on the degree to which the proposed costs represent what the cost of the contract should be, assuming reasonable economy and efficiency.

Cost Driver Attributes: Productivity factors in the software product development process that include software product attributes, computer attributes, personnel attributes, and project attributes.

Cost Drivers: The controllable system design or planning characteristics that have a predominant effect on the system's costs. Those few items, using Pareto's law, that have the most significant cost impact.

Cost Estimating Relationship: An algorithm relating the cost of an element to physical or functional characteristics of that cost element or a separate cost element; or relating the cost of one cost element to the cost of another element.

Cost Estimating Relationships (CER): A mathematical expression that describes, for predicative purposes, the cost of an item or activity as a function of one or more independent variables.

Cost Model: An estimating tool consisting of one or more cost estimating relationships, estimating methodologies, or estimating techniques used to predict the cost of a system or one of its lower level elements.

Cost or Pricing Data: All facts that, at the time of the price agreement, the seller and buyer would reasonably expect to affect price negotiations. Cost or pricing data requires certification. Cost or pricing data are factual, not judgmental data, and are therefore verifiable. While these data do not indicate the accuracy of the prospective contractor’s judgment about estimated future costs or projections, they do include the data utilized to form the basis for that judgment. Cost or pricing data are more than historical accounting data; they are all the facts that can be reasonably expected to contribute to the soundness of estimates of future costs and to the validity of determinations of costs already incurred.

Cost/Schedule Control System Criteria (C/SCSC): A set of criteria specified by the Federal Government for reporting project schedule and financial information.

Delivered Source Instructions (DSI): The number of source lines of code developed by the project. The number of DSIs is the primary input to many software cost estimating tools. The term delivered is generally meant to exclude non-delivered support software such as test drivers. The term source instructions includes all program instructions created by project personnel and processed into machine code by some combination of preprocessors, compilers, and assemblers. It excludes comments and unmodified utility software. It includes job control language, format statements, and data declarations.

Delphi Technique: A group forecasting technique, generally used for future events such as technological developments, that uses estimates from experts and feedback summaries of these estimates for additional estimates by these experts until a reasonable consensus occurs. It has been used in various software cost-estimating activities, including estimation of factors influencing software costs.

Detail Estimating: Grass Roots, Bottoms-Up: The logical buildup of estimated hours and material by use of blue-prints, production planning tickets, or other data whereby each operation is assigned a time value.

DoD-STD-2167A/498: A US Department of Defense standard that specifies the overall process for the development and documentation of mission-critical software systems. DoD-STD-2167A/498 has direct connections to five other standards that are not software specific. These five standards are as follows:

	· MIL-STD-1521: Technical Reviews and Audit for Systems, Equipment, and Computer Software

	· MIL-STD-480: Configuration Control: Engineering Changes, Deviations, and Waivers

	· MIL-STD-481: Configuration Control: Engineering Changes, Deviations, and Waivers (Short Form)

	· MIL-STD-490: Specification Practices

	· MIL-STD-499: Engineering Management

MIL-STD-480 and 481 have been superseded by MIL-STD-973. MIL-STD-973 consolidates several earlier standards for configuration management and resolves inconsistencies and ambiguities that existed between them. When DoD-STD-2167A/498 is applied to contract, appropriate tailoring instructions should be included to indicate that the contract is to comply with the more recent MIL-STD-973.

Domain: A specific phase or area of the software life cycle in which a developer works. Domains define developers and users areas of responsibility and the scope of possible relationships between products. The work can be organized by domains such as Software Engineering Environments, Documentation, Project Management etc.

Evolutionary Acquisition (EA) Model: The EA Model is pretty similar in content to the Waterfall Model except it encourages prototyping. The underlying factor in EA is to field a well-defined core capability quickly in response to a validated requirement, while using a phased upgrade program to eventually enhance the system to provide the full system capability. This process is also referred to as evolutionary prototyping.
Expert Judgment Models: use a method of software estimation that is based on consultation with one or more experts that have experience with similar projects. An expert-consensus mechanism such as the Delphi technique may be used to produce the estimate.

Fair Price (See Also Reasonable Price): From the perspective of a buyer, a fair price is a price that is in line with (or below) the fair market value of the contract deliverable (to the extent that fair market value can be approximated through price analysis). "Fair market value" is the price you should expect to pay, given the prices of bona fide sales between informed buyers and informed sellers under like market conditions in competitive markets for deliverables of like type, quality, and quantity. When data on probable performance costs are available, a separate test of "fairness" is whether the proposed price is in line with (or below) the total allowable cost of providing the contract deliverable. This cost would be the cost incurred by a well managed, responsible firm using reasonably efficient and economical methods of performance, plus a reasonable profit. From the perspective of a seller, a fair price is a price that is realistic in terms of the seller's ability to satisfy the terms and conditions of the contract.

Fourth Generation Language (4GL): Fourth generation languages are programming languages closer to human languages than typical high level programming languages. Most 4GLs are used to access databases. For example a typical 4GL command is “FIND ALL RECORDS WHERE NAME IS “SMITH”.”

Function Points: Function Points are those pieces of code that perform some specific activity related to inputs, inquiries, outputs, master files, and external system interfaces.

Historical Data: A term used to describe a set of data reflecting actual cost or past experience of a product or process.

Incremental Development: The incremental development approach is a top down implementation of distinct functional elements of the product. The development of each increment is accomplished as a separate waterfall type of development. The incremental development methodology differs from the evolutionary approach in that under the incremental strategy the end product is well-defined.

Knowledge Base: The repository of knowledge in a computer system or organization. The collection of data, rules, and processes that are used to control a system, especially one using artificial intelligence or expert system methods.

Life Cycle: The stages and process through which hardware or software passes during its development and operational use. The useful life of a system. Its length depends on the nature and volatility of the business, as well as the software development tools used to generate the databases and applications.

Management Information Systems: A computer-based system of processing and organizing information that provides different levels of management within an organization with accurate and timely information needed for supervising activities, tracking progress, making decisions, and isolating and solving problems.

Metric: Quantitative analysis values calculated according to a precise definition and used to establish comparative aspects of development progress, quality assessment or choice of options.

New Line of Code: A source line of code that will be developed completely, i.e., designed, coded and tested.

Paradigm: A model, example, or pattern. A generally accepted way of thinking.

Parametric Cost Model: A mathematical representation of parametric cost estimating relationships that provides a logical and predictable correlation between the physical or functional characteristics of a system, and the resultant cost of the system. A parametric cost model is an estimating system comprising cost estimating relationships (CERs) and other parametric estimating functions, e.g., cost quantity relationships, inflation factors, staff skills, schedules etc. Parametric cost models yield product or service costs at designated levels and may provide departmentalized breakdown of generic cost elements. A parametric cost model provides a logical and repeatable relationship between input variables and resultant costs.

Platform: Hardware or software architecture of a particular model or family of computers. The term sometimes refers to the hardware and its operating system.

Price Analysis: The process of examining and evaluating a proposed price without evaluating its separate cost elements and proposed profit.

Procedures: Manual procedures are human tasks. Machine procedures are lists of routines or programs to be executed, such as described by the Job Control Language (JCL) in a mini or mainframe, or the batch processing language in a personal computer.

Process: The sequence of activities (in software development) described in terms of the user roles, user tasks, rules, events, work products, resource use, and the relationships between them. It may include the specific design methodology, language, documentation standards etc.

Rapid Prototyping: The creation of a working model of a software module to demonstrate the feasibility of the function. The prototype is later refined for inclusion in a final product.

Rayleigh Distribution: A curve that yields a good approximation to the actual labor curves on software projects.

Real-Time: 1) Immediate response. The term may refer to fast transaction processing systems in business; however, it is normally used to refer to process control applications. For example, in avionics and space flight, real-time computers must respond instantly to signals sent to them. 2) Any electronic operation that is performed in the same time frame as its real-world counterpart. For example, it takes a fast computer to simulate complex, solid models moving on screen at the same rate they move in the real world. Real-time video transmission produces a live broadcast.

Reasonable Price (See Also Fair Price): A price that a prudent and competent buyer would be willing to pay for the contract deliverable, given adequate data on (1) market conditions, (2) alternatives for meeting the requirement, (3) the evaluated price of each alternative, and (4) non-price evaluation factors (in "best value" competitions).

Re-engineering: Process of restructuring and redesigning an operational (or coded) hardware or software system or process in order to make it meet certain style, structure, or performance standards.

Reusability: Ability to use all or the greater part of the same programming code or system design in another application.

Reuse: Software development technique that allows the design and construction of reusable modules, objects, or units, that are stored in a library or database for future use in new applications. Reuse can be applied to any methodology in the construction phase, but is most effective when object oriented design methodologies are used.

Security: The protection from accidental or malicious access, use, modification, destruction, or disclosure. There are two aspects to security, confidentiality and integrity.

Software Development Life Cycle: The stages and process through which software passes during its development. This includes requirements definition, analysis, design, coding, testing, and maintenance.

Software Development Life Cycle Methodology: Application of methods, rules, and postulates to the software development process to establish completeness criteria, assure an efficient process, and develop a high quality product.

Software Engineering Institute (SEI): SEI is a federally funded research and development center established in 1984 by the DoD with a broad charter to address the transition of software engineering technology. The SEI is an integral component of Carnegie Mellon University and is sponsored by the Office of the Under Secretary of Defense for Acquisition and Technology. SEI developed the Software Acquisition Capability Maturity Model (CMM) and the Checklist and Criteria for Evaluating the Cost and Schedule Estimating Capabilities of Software Organizations.

Software Method (or Software Methodology): Focuses on how to navigate through each phase of the software process model (determining data, control, or uses hierarchies; partitioning functions; and allocating requirements) and how to represent phase products (structure charts; stimulus-response threads; and state transition diagrams).

Software Tool: Program that aids in the development of other software programs. It may assist the programmer in the design, code, compile, link, edit, or debug phases.

Source Lines of Code (SLOC): All executable source code statements including deliverable Job Control Language (JCL) Statements, Data declarations, Data Typing statements, Equivalence statements, and Input/Output format statements. SLOC does not include any statement that upon its removal, the program will still compile, e.g., comments, blank lines, and non-delivered programmer debug statements.

Space Systems Cost Analysis Group: The SSCAG is an organization co-chaired by the cost directorates of the Air Force Space and Missile Systems Center (SMC) and NASA at Johnson Space Center. The Software Subgroup of the SSCAG, under a multi-year task, developed the Software Methodology Handbook and a software database of over 2600 records used to calibrate five software estimating models (PRICE-S, SEER-SEM, SLIM, SASET AND REVIC).

Spiral Development: The spiral model encompasses features of the phased life cycle as well as the prototype life cycle. However, unlike those life cycles, the spiral model uses risk analysis as one of its elements. It also uses the waterfall model for each step so as to avoid any risks.

Top-Down Models: Use a method of estimation that estimates the overall cost and effort of the proposed project derived from global properties of the project. The total cost and schedule is partitioned into components for planning purposes.

Update: To update an estimate or CER means to utilize the most recent data to make it current, accurate and complete.

Validation: In terms of a cost model, a process used to determine whether the model selected for a particular estimate is a reliable predictor of costs for the type of system being estimated.
Waterfall Model: An eight-phase process used in developing software for most Department of Defense (DoD) weapon systems, as described in DoD-Standard 2167A. This process, when done sequentially, is based on the waterfall model of software development, as described by Barry Boehm. Each phase requires the delivery of particular documentation products.

Work Breakdown Structure: A work breakdown structure is a product-oriented family tree, composed of hardware, software, services, data and facilities which results from system engineering efforts during the development and production of a defense material item, and which completely defines the program. A work breakdown structure displays and defines the product(s) to be developed or produced and relates the elements of work to be accomplished to each other and to the end product. MIL-HDBK 881 is the modern guide for developing a WBS. (See Appendix 19C contains a sample WBS.)

Workstation: High-performance, single user microcomputer or minicomputer that has been specialized for graphics, CAD, CAE, or scientific application.

SAMPLE SOFTWARE WORK BREAKDOWN STRUCTURE

The following sample Work Breakdown Structure is based on the sample Software WBS contained in NRaD’s Software Size, Cost and Schedule Estimation Process, modified for this handbook. It is oriented to the development of a MIL-STD-498 or DoD-STD-2167A software product. The sample WBS is very detailed and is meant to be tailored to each project's specific tracking needs and requirements.

I. PROJECT MANAGEMENT

I. Project Management Plan

I. Define task execution plans

I. Define project schedule/milestones

I. Define prelim SW functional requirements

I. Develop project WBS

I. Define SW management metrics process

I. Define/allocate project functions

I. Hardware engineering

I. Software engineering

I. Configuration Management

I. Software Quality Assurance

I. Inspect, Validate & Verify (IV&V)

I. Project support

I. Software metrics

I. Determine staffing

I. Determine SWE tool requirements

I. Determine training requirements

I. Plan activities/reviews

I. Management Reporting

II. SOFTWARE ESTIMATION

II. Preliminary project estimate

II. Establish cost estimation methodology/tools

II. ID similar functions/historical projects

II. Identify project objectives and requirements

II. Plan the activities/initial WBS

II. Estimate product size

II. Estimate cost and effort

II. Estimate schedule

II. Identify potential risk areas

II. Set up cost estimate tracking metrics

II. Review/refine with project personnel

II. System Requirements Phase Estimate

II. Establish software estimate file

II. Develop top-level SW requirements WBS

II. Develop baseline software estimates

II. Formal inspection/approval of estimate

II. Refine/record/track estimates

II. Software Requirements Phase Estimate Update

II. Update top-level design WBS

II. Update baseline requirements phase estimates

II. Conduct formal inspection of estimate

II. Refine/record/track estimates periodically

II. Design Phase Estimate Update

II. Develop detailed CUT WBS

II. Update baseline CUT estimates

II. Formal inspection of estimate

II. Refine/record/track estimates periodically

II. Code and Unit Test Phase Estimate Update

II. Update detailed WBS

II. Update/revise estimates

II. Update/revise risk assessment

II. Update preliminary maintenance estimate

II. Refine/record/track estimates periodically

II. Formal inspection of estimate

II. Integration Phase Estimate Update

II. Update detailed WBS

II. Update/revise estimates

II. Update/revise risk assessment

II. Update/revise maintenance estimate

II. Refine/record/track estimates periodically

II. Formal inspection of estimate

II. Post-Deployment Phase Estimate

II. Close out/report final cost/schedule/size

III. RISK MANAGEMENT

III. Preliminary Risk Management Plan

III. Identify potential risk areas

III. Analyze risk areas

III. Prioritize risks

III. Identify risk tracking metrics

III. Write Plan

III. Risk Management Plan review/inspection

III. Update Risk Management Plan

III. Baseline Risk Management Plan

III. Update/revise risk assessment

IV. SOFTWARE METRICS

IV. Software Metrics plan

IV. Process Effectiveness Metrics

IV. Process Cost Metrics

IV. Cost/Schedule Tracking Metrics

IV. Performance Measurement Indicators

IV. Software Quality Metrics

IV. Update/revise Metrics Plan

IV. Track/analyze cost/schedule/size estimate variances

IV. Track/analyze cost estimating effort and tool costs

IV. Track/analyze cost/schedule variance

IV. Track/analyze requirements and design progress

IV. Track/analyze code and test progress

IV. Track/analyze person-months effort

IV. Track/analyze program size

IV. Track/analyze computer resources utilization

IV. Track/analyze requirements stability

IV. Track/analyze design stability

IV. Track/analyze complexity metrics

IV. Track/analyze modules metrics

IV. Track/analyze testing metrics

IV. Track/analyze defects metrics

IV. Track/analyze product and operational metrics

IV. Formal reports

IV. Report final project analysis

V. SYSTEM ENGINEERING

V. Analyze operational requirements

V. Hardware/software trade-off studies

V. Sizing/timing studies

V. Define computer resource constraints

V. Memory

V. Throughput

V. I/O channel utilization

V. I/O throughput

V. Storage

V. Database overhead

V. Identify risks

V. Preliminary System Segment Specification (SSS)

V. Define system states

V. Define modes of operation

V. Define system capability

V. Define external inter. requirements

V. Write external interface descriptions

V. Define physical characteristics

V. Define system quality requirements

V. Reliability

V. Maintainability

V. Availability

V. Environmental conditions

V. Transportability

V. Flexibility and expansion

V. Specify design/construct requirements

V. Define system workmanship requirements

V. Define system interchange requirements

V. Define system safety requirements

V. Define system security requirements

V. Determine Government Furnished Equipment

V. Define computer resource reserve capacity

V. Define system logistics

V. Specify personnel requirements

V. Define training requirements

V. Determine for each System/Segment

V. Purpose

V. Description

V. Identify capabilities

V. Identify requirements precedence

V. Validate and Verify (V&V) requirements

V. QA provisions

V. Inspection responsibility

V. Special Tests and exams

V. Requirements cross reference

V. Preliminary Interface Requirement Specification (IRS)

V. Identify HWCIs/CSCIs interfaces

V. Draw interface diagram(s)

V. Identify for each interface

V. Timing

V. Protocol

V. Priority

V. Unit of measure

V. Limits/ranges

V. Data elements

V. Precision

V. SSS/IRS inspection(s)/review(s)

V. System Requirements Review (SRR)

V. Update SSS

V. Baseline SSS

V. Update Preliminary IRS

VI. CONFIGURATION MANAGEMENT (CM)

VI. Preliminary CM Plan

VI. CM Plan review/inspection

VI. Update CM Plan

VI. Baseline CM Plan

VI. Set Up Configuration Control Board (CCB)

VI. Conduct/maintain Configuration Status (CS) accounting

VI. Prepare Configuration Status Report (CSR)

VI. Conduct Functional Configuration Audit (FCA)

VI. Conduct Physical Configuration Audit (PCA)

VI. Process Engineering Change Proposals (ECPs)

VI. Process System Change Notices (SCNs)

VI. Generate inputs to the Software Version Document (SVD)

VI. Prepare Version Control Reports

VII. SOFTWARE QUALITY ASSURANCE (SQA)

VII. Preliminary SQA Plan

VII. Plan SW quality metrics process

VII. SQA Plan inspection(s)/review(s)

VII. Update SQA Plan

VII. Baseline SQA Plan

VIII. SOFTWARE DEVELOPMENT PLAN (SDP)

VIII. Preliminary SDP

VIII. Define formal review procedures/criteria

VIII. Define Software Development Library procedures

VIII. Define corrective action process

VIII. Define Problem/Change Report Format

VIII. Define design standards

VIII. Define coding standards

VIII. Define testing approach

VIII. Define requirements traceability process

VIII. SDP inspection(s)/review(s)

VIII. Update SDP

VIII. Baseline SDP

IX. INTERFACE REQUIREMENTS

IX. Analyze Preliminary IRS

IX. Interface Design Document

IX. Interface 1 to N define

IX. Data elements

IX. Message descriptions

IX. Priority

IX. Communications protocol

IX. Interface inspection(s)/walk-through(s)

IX. Interface rework

IX. Interface Design Document (IDD) inspection(s)

IX. IDD rework

IX. Participate in Preliminary Design Review (PDR)

IX. Update Interface Design Document

IX. Baseline Interface Design Document

X. DATABASE REQUIREMENTS

X. Preliminary Database Design Document (DDD)

X. Analyze database requirements

X. Identify data requirements

X. Perform database studies

X. Database Design Document inspection(s)

X. Participate in PDR

X. Update Database Design Document

X. Baseline Database Design Document

XI. DEVELOPMENTAL SOFTWARE

XI. Analyze system requirements

XI. Identify software requirements

XI. Determine derived software requirements

XI. Identify candidate COTS software

XI. Identify candidate reusable software

XI. Perform feasibility studies

XI. Select computer language(s)

XI. Allocate functions/identify CSCIs

XI. Determine software requirement testability

XI. CSCI 1 to N

XI. FUNCTIONAL REQUIREMENTS

XI. Analyze CSCI requirements

XI. Preliminary Software Requirements Specification

XI. Identify internal interfaces

XI. Identify functional/derived requirements

XI. engineering

XI. data elements

XI. safety

XI. security

XI. human engineering

XI. Identify software quality factors

XI. Identify design constraints

XI. Identify qualification methods

XI. Trace requirements to SSS

XI. Software Requirements Specification (SRS) inspection(s)/review(s)

XI. Software Specification Review (SSR)

XI. Update SRS

XI. Baseline SRS

XI. PRELIMINARY DESIGN

XI. Preliminary Design analysis

XI. Identify CSUs

XI. Identify internal interfaces

XI. Identify external interfaces

XI. Preliminary Software Design Documents (SDDs)

XI. Overview

XI. Architecture

XI. Memory/processing time allocation

XI. CSCI design description

XI. CSU 1 - N

XI. Identify allocated requirements

XI. Identify CSUs

XI. Identify relationships between CSUs

XI. Data flow and execution control

XI. Identify derived requirements

XI. Trace requirements to SRS

XI. CSU inspection(s)/walk-through(s)

XI. CSU design rework

XI. Preliminary SDD inspection(s)/review(s)

XI. Preliminary Design Review (PDR)

XI. Update Preliminary SDD

XI. DETAILED DESIGN

XI. Detailed SDD

XI. CSU 1 - N

XI. Describe constraints

XI. Describe input/output data elements

XI. Describe local data elements

XI. Describe interrupts and signals

XI. Describe algorithms

XI. Describe data structures

XI. Describe local datafiles/database

XI. Describe limitations

XI. Trace requirements to Preliminary SDD

XI. CSU inspection(s)/walk-through(s)

XI. CSU design rework

XI. SDD inspection(s)/review(s)

XI. SDD rework

XI. Critical Design Review (CDR)

XI. Update SDD

XI. Baseline SDD

XI. CODE and UNIT TEST

XI. CSU 1 - N

XI. Design/document unit test

XI. Code and compile

XI. Write comments/header

XI. Code inspection(s)/walk-through(s)

XI. Rework

XI. Testing and analysis

XI. Rework

XI. Maintain Software Development Folder (SDF)

XI. Turn over accepted CSU to CM

XI. TEST READINESS REVIEW

XI. CSU INTEGRATION and TESTING

XI. Analyze Software Test Report

XI. Perform necessary rework

XI. Perform CSU regression testing

XI. Update SDFs

XI. TEST READINESS REVIEW

XI. CSCI INTEGRATION and TESTING

XI. Analyze Software Test Report

XI. Perform necessary rework

XI. Perform CSU regression testing

XI. Update SDFs

XII. SOFTWARE INTEGRATION & TESTING

XII. Software Test Plan

XII. Determine general test requirements

XII. Determine test classes

XII. stress

XII. timing

XII. erroneous input

XII. maximum capacity

XII. Determine test levels

XII. CSCI

XII. CSCI to CSCI integration

XII. CSCI to HWCI integration

XII. System

XII. Determine test definitions

XII. Test 1 - N

XII. determine objective

XII. determine special requirements

XII. identify test type/class

XII. determine qualification method

XII. cross reference to SRS requirements

XII. determine type of data to record

XII. identify assumptions/constraints

XII. determine test schedule

XII. identify data analysis techniques

XII. Perform Integration & Testing

XII. System

XII. Integrate CSCIs

XII. Write System Test Description

XII. Conduct Test Readiness Review

XII. Perform testing and analysis

XII. Write System Test Report

XII. Rework

XII. Regression testing

XII. CSCI

XII. Integrate CSUs

XII. Write Software Test Description

XII. Conduct Test Readiness Review

XII. Perform testing and analysis

XII. Write Software Test Report

XII. Rework

XII. Regression testing

XII. CSU

XII. Integrate CSUs

XII. Write Software Test Description

XII. Conduct Test Readiness Review

XII. Perform testing and analysis

XII. Write Software Test Report

XII. Testing and analysis

XII. Rework

XII. Regression testing
19D. Popular Parametric Software Cost Models

19D.1 Introduction
There are several sophisticated parametric software cost models that consider multiple parameters in computing cost or effort required. A list of some common models is provided below, listed in alphabetical order. Subsequent sections are a basic discussion of each model. For each of the models, general information, principal inputs, processing, principal outputs, calibration, and life cycle (or support) considerations will be discussed. When more detailed information is needed, cost estimators are encouraged to consult the referenced documents.

· Automated Cost Estimating Integrated Tools (ACEIT)

· COnstructive COst MOdel (COCOMO.II)

· Cost Xpert

· ForeSight

· KnowledgePLAN Model

· PRICE-S Model

· Revised Enhanced Version of Intermediate COCOMO (REVIC)

· SoftCost-Object-Oriented (OO) Model

· Software Architecture, Sizing, and Estimating Tool (SASET)

· Software ESTimator (SoftEST)

· Software Life Cycle Model (SLIM)

· System Evaluation and Estimation of Resources Software Estimating Model (SEER-SEM)

19D.2 Automated Cost Estimating Integrated Tools (ACEIT)

ACEIT is an estimating system consisting of a suite of tools designed to assist cost analysts in arriving at cost estimates, conducting "what-if?" studies, developing cost proposals and evaluations, conducting risk and uncertainty analysis, and developing Cost Estimating Relationships (CERs). Its primary purpose is Financial Management. ACEIT is a Joint Service system, sponsored by the Air Force Materiel Command (AFMC) Electronic Systems Center and the US Army Cost and Economic Analysis Center (CEAC). The result of government-sponsored efforts, the ACEIT suite of applications is available to U.S. Government organizations with no charge for use (but there is an annual maintenance & support fee). It is used by Acquisition Program Offices and at various other levels across the Armed Services, throughout DoD, and by other Government agencies.

The ACEIT system is comprised of five analysis/estimating tools:

· Automated Cost Estimator (ACE), (the spreadsheet)

· Automated Cost Database (ACDB), (library of commercial and non-commercial cost models)

· Cost Analysis Statistics Package (CO$TAT), (full-feature statistics package)

· Cost Risk Assessment (RI$K), (model which quantifies risk associated with a cost estimate)

· ACE Executive.

ACE is the heart of ACEIT. It automates all of the steps of the estimating process, including, building a Work Breakdown Structure (WBS), specifying estimating methods, performing learning, time phasing and inflation, and documentation. ACE also provides access to on-line databases and a knowledge base of over 1000 cost estimating relationships, models, and source documents from which users can identify appropriate estimating methods and incorporate them into their estimate.

ACDB is an automated cost database with the capability to enter, search, and retrieve cost, schedule, technical, and programmatic data and to automatically load retrieved data into the Cost Analysis Statistics Package (CO$TAT). CO$TAT is a cost analysis statistical package built specifically for the cost estimator to perform statistical analyses commonly used in cost estimation. RI$K is a cost risk application that performs risk and uncertainty analysis. ACE Executive allows estimates and models hosted in ACE to act as cost model servers to other applications.

	Product

Information:
	
	
	Vendor Profile:
	

	Product:
	ACEIT
	
	Company:
	ACEIT Gov’t Prog Director

	 Latest Version:
	3.1
	
	Address:
	ESC/FMC

	 Last Release:
	1997
	
	
	Hanscom AFB, MA 01731

	First Release:
	
	
	800 Phone Number:
	

	
	
	
	Phone Number:
	781-377-5120

	Pricing Information:
	as of 1Q1998
	
	Fax Number:
	

	Single User Gov’t:
	Free w/ ACEIT maint contract
	
	Internet:
	www.aceit.com

	Single User Commercial:
	$2,500/yr
	
	Marketing Contact:
	Telecote Research, Inc.

Jenny Nigra

	Annual Maintenance
	$1.5K $2.5K/yr
	
	
	

	Site License Gov’t:
	
	
	Phone Number:
	805-964-6963

	Site License Commercial:
	$9,900/yr
	
	Fax Number:
	805-964-7329

	GSA:
	
	
	E-Mail:
	jnigra@sb.telecote.com

	Evaluation Copy
	Free for 90 days
	
	
	

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	Win 95/NT
	
	OS:
	Win 3.1

	RAM:
	16 MB
	
	RAM:
	8 MB

	HD Storage:
	60 MB
	
	HD Storage:
	40 MB

	The ACEIT system is comprised of five analysis/estimating tools: Automated Cost Estimator (ACE), (the spreadsheet); Automated Cost Database (ACDB), (relational data base); Cost Analysis Statistics Package (CO$TAT), (full-feature statistics package); Cost Risk Assessment (RI$K), (quantifies risk associated with a cost estimate) and ACE Executive. ACE, the Automated Cost Estimator, is a special purpose program, specifically developed for cost analysis. It has been organized and structured to follow the steps or phases used in developing a cost estimate, ranging from defining what is being estimated through time-phasing and final documentation. ACDB is the cost database module that contains cost, schedule, technical, and programmatic data on system acquisition contracts. It is a PC-based program designed to assist the user in building, loading, maintaining, and querying a relational data base of cost and technical data, and in analyzing data subsets retrieved from it. The ACEIT Executive is a three-part application: the ACE Calculation Server, the RI$K Calculation Server, and the Microsoft Excel Client. The Server applications let you run ACE and RI$K sessions from any client application. Using the Excel client, you can link applications that would naturally interface with Excel to ACE and RI$K. The user can either enter own CERs/equations or import the results of other models such as PRICE and SEER. Outputs look like spreadsheets or can link to Excel.

19D2.1 ACEIT Inputs

ACEs provides a workscreen or spreadsheet to perform each step required to make an estimate. The complete list of steps is as follows:

1.) Define the WBS/CES

2.) Enter the estimating methodologies

3.) Adjust G&A, fee, overhead, escalation, units

4.) Apply learning curves

5.) Time phase the estimate

6.) Estimate/perform what-ifs

7.) Document the estimate

8.) Review and Refine

The input screens resemble spreadsheets and require the equations and variables to be defined. Within each workscreen, functionality is provided in ACE by giving each column a dedicated purpose. For example, the Learning Curve Slope column only lets you enter a learning curve slope or a variable name that represents the slope. Each column has its own syntax. By making entries in several columns for a row, you can specify that rows estimating methodology. Typically, the rows in ACE represent WBS/CES line items or input variable items.

ACE can import from PRICE Software Models, SEER Cost Models, MS Excel and MS Word.

19D2.2 ACEIT Processing

Since the user enters the equations and variables, the user basically defines the processing. The ACE structure allows the user to progressively move from one workscreen to another. The user creates the model structure of the estimate, and calculates the result. This model building can be free-form. The user does not need to move through the workscreens in a pre-defined order. Unique IDs or variable names can be specified for each row and then used in the ACE columns of other rows. This lets rows of the model link together into a system of equations.

19D2.3 ACEIT Outputs

Reports are basically spreadsheets containing the results. Tools that ACE can export data to include MS Excel and MS Word.
19D2.4 ACEIT Calibration

Since the user controls the equations, calibration is accomplished by creating historical databases, experience and refining the equations.

19D2.5 ACEIT Life Cycle Considerations

Include the WBS Lifecycle elements into the model.

19D.3 COnstructive COst MOdel (COCOMO.II)

COCOMO.II is a screen-oriented, interactive-software package that assists in budgetary planning and schedule estimation of a software development project prior to any work beginning. Through the flexibility of COCOMO.II, a software project manager can develop a model (or multiple models) of projects in order to identify potential problems in resources, personnel, budgets, and schedules both before and after the potential software package has been completed.

The COCOMO.II software package is based upon a recently revised version of the original COnstructive COst MOdel (COCOMO) first published by Barry Boehm in his book Software Engineering Economics, Prentice-Hall (1981), and the Ada COCOMO (1987) predecessors. Table 19D-1 summarizes the different versions of COCOMO.

Table 19D-1. COCOMO Model Versions

	Version
	Description/Release Date

	COCOMO 1.0
	original version released 1981 for waterfall model.

	 Basic Level
	Consists of 3 simple models with single parameter effort & schedule equations.

	 Intermediate Level
	Contains nominal equations with 15 multipliers that adjust the results to reflect the unique attributes of the specific program.

	 Detailed Level
	Adjusts the Intermediate Level multipliers for each phase of the SW development life cycle.

	Ada COCOMO
	1987 update for Ada SW language development

	COCOMO.II.1997.0 (also referred to as COCOMO 2.0)
	Released on March 7, 1997 to better estimate costs for new SW development processes.

The primary objectives of the COCOMO.II.1997 effort were to:

· To develop a software cost and schedule estimation model attuned to the life cycle practices of the 1990's and 2000's.

· To develop software cost database and tool support capabilities for continuous model improvement.

· To provide a quantitative analytic framework, and set of tools and techniques for evaluating the effects of software technology improvements on software life cycle costs and schedules.

The full COCOMO.II model includes three stages. Stage 1 supports estimation of prototyping or applications composition efforts. Stage 2 supports estimation in the Early Design stage of a project, when less is known about the project’s cost drivers. Stage 3 supports estimation in the Post-Architecture stage of a project. The current version of COCOMO.II implements stage 3 formulas to estimate the effort, schedule, and cost required to develop a software product. It also provides the breakdown of effort and schedule into software life cycle phases and activities from the original COCOMO manual. These are still reasonably valid for waterfall model software projects, but need to be interpreted for non-waterfall projects.

Equation 19D-1 below is the equation used by COCOMO.II to calculate the estimated effort.

Equation 19D-1. Effort Estimation Equation

[image: image5.wmf](

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

×

+

å

ú

û

ù

ê

ë

é

×

÷

ø

ö

ç

è

æ

+

×

×

=

÷

÷

ø

ö

ç

ç

è

æ

+

=

=

Õ

ATPROD

ASLOC

Size

100

BRAK

1

A

EM

PM

100

AT

SF

01

.

0

01

.

1

17

1

i

i

5

1

j

j

Where:

[image: image6.wmf]

EMBED Equation.3[image: image7.wmf]ú

û

ù

ê

ë

é

×

+

×

+

×

+

+

×

÷

ø

ö

ç

è

æ

-

×

+

=

100

IM

3

.

0

CM

3

.

0

DM

4

.

0

SU

AA

100

AT

100

KASLOC

KNSLOC

Size

[image: image8.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

=

å

=

5

1

j

SF

01

.

0

01

.

1

B

	Symbol
	Description

	A
	Constant, provisionally set to 2.5

	AA
	Assessment and assimilation

	ADAPT
	Percentage of components adapted (represents the effort required in under-standing software)

	AT
	Percentage of components that are automatically translated

	ATPROD
	Automatic translation productivity

	BRAK
	Breakage: Percentage of code thrown away due to requirements volatility

	CM
	Percentage of code modified

	DM
	Percentage of design modified

	EM
	Effort multipliers: RELY, DATA, CPLX, RUSE, DOCU, TIME, STOR, PVOL, ACAP, PCAP, PCON, AEXP, PEXP, LTEX, TOOL, SITE

	IM
	Percentage of integration and test modified

	KASLOC
	Size of the adapted component expressed in thousands of adapted source lines of code

	KNSLOC
	Size of component expressed in thousands of new source lines of code

	PM
	Person Months of estimated effort

	SF
	Scale Factors: PREC, FLEX, RESL, TEAM, PMAT

	SU
	Software understanding (zero if DM = 0 and CM = 0)

	Product Information:
	
	
	Vendor Profile:
	

	Product:
	COCOMO.II
	
	Company:
	Developed by USC-CSE

	 Latest Version:
	2.0
	
	Address:
	Univ of So. California

	 Last Release:
	1997
	
	
	Irvine, CA

	First Release:
	1981
	
	800 Phone Number:
	

	
	
	
	Phone Number:
	213-740-6470

	Pricing Information:
	as of 1Q1998
	
	Fax Number:
	

	Single User Gov’t:
	Free download
	
	Internet:
	Http://sunset.usc.edu/COC

	Single User Commercial:
	from COCOMO.II
	
	
	OMOII/cocomo.html

	Annual Maintenance
	home page
	
	Marketing Contact:
	

	Site License Gov’t:
	
	
	Phone Number
	

	Site License Commercial:
	
	
	Fax Number:
	

	GSA:
	
	
	E-Mail:
	Cocomo-info@

Sunset.usc.edu

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	Solaris 2.4, SunOS 4.x w/Motif or Win 95/NT
	
	OS:
	Solaris 2.4, SunOS 4.x w/Motif or Win 3.1

	RAM:
	4 MB
	
	RAM:
	4 MB

	HD Storage:
	5 MB
	
	HD Storage:
	5 MB

	Product Description:
COCOMO.II model is an updated version of the 1981 COCOMO and 1987 Ada COCOMO models tailored to the new software development life cycle processes and capabilities. Major new modeling capabilities of COCOMO.II include: a tailorable family of software sizing models, involving Object Points, Function Points, and Source Lines of Code (SLOC); non-linear models for software reuse and reengineering; an exponent-driver approach for modeling relative software diseconomies of scale; and several changes to previous COCOMO effort-multiplier cost drivers.

19D.3.1 COCOMO.II Inputs

The primary COCOMO.II input are the program size, in KDSI, Function Points or Object Points. However, ratings for sixteen additional attributes must be assessed. These attributes are included in four categories as follows:

· Product attributes: These attributes describe the environment in which the program operates. The attributes in this category are: reliability requirements, database size, documentation matched to life cycle needs, required reusability and program complexity.

· Platform attributes: These attributes refer to the limitations placed upon the development effort by the hardware and operating system being used to run the project. The attributes in this category are execution time constraints, main storage constraints, and platform volatility.

· Personnel attributes: These attributes describe the skill levels of personnel assigned to the program. The attributes in this category include: analyst capability, applications experience, programmer capability, programming language experience, platform experience and personnel continuity.

· Project attributes: These attributes refer to the constraints and conditions under which project development takes place. The attributes in this category are use of software development tools and multi-site development.

These 16 factors (or effort multipliers (EM)) are incorporated into the schedule and effort estimation formulas by multiplying them together. The numerical value of the ith adjustment factor is called EMi and their product is called the adjustment factor or EAF. The actual effort, PMtotal, is the product of the nominal effort times the EAF.

19D.3.2 COCOMO.II Processing

Using COCOMO.II, a nominal assessment of man-months based on size alone is assessed for the program being considered. Next, the ratings for all attributes are multiplied to compute the required man-months of effort for the project. The primary challenges in using COCOMO.II are determining size and assigning proper ratings to the sixteen attributes.

19D.3.3 COCOMO.II Outputs

The output of the COCOMO.II model is simply the level of effort in man-months for the project being estimated and a schedule in months. The effort output can easily be converted to a monetary value if the cost per man-month is known. The Phase Distribution is one of the outputs. Its function is to display a breakdown of the software effort and schedule into the phases of the development cycle. These phases are plans & requirements, design, programming and integration & test. The outputs of the model are very basic and not very flexible, so performance metrics will need to be created outside of this model.

19D.3.4 COCOMO.II Calibration

Calibration is essential to the proper use of software cost models. The user of the COCOMO.II may calibrate EAFs and the effort/schedule equations of the current project. (Detailed procedures for COCOMO calibration are discussed in the COCOMO Reference Manual.)

19D.3.5 COCOMO.II Life Cycle Considerations

There are no life cycle considerations included in the COCOMO.II model. The COCOMO Maintenance model (COCOMO-M), described in Chapter 30 of Boehm's book, can be used to estimate annual man-months required to support a software program. No mention of COCOMO-M is contained in the COCOMO.II literature. For the intermediate level COCOMO-M, all inputs from COCOMO 1.0 are used, except that different numerical values are assigned to two attributes: reliability and use of modern design practices. The annual support costs can be computed by multiplying the number of man-months by the average cost of a man-month.

19D.4 Cost Xpert
Marotz, Inc. developed a new model called Cost Xpert. The model is designed to provide software project cost estimates, to determine optimal delivery time, to break the project down into tasks by allocating time/effort and to perform quantitative risk/sensitivity analysis. It supports projects using object- oriented development, GUI development and formalized software reuse.

	Product

Information:
	
	
	Vendor Profile:
	

	Product:
	Cost Xpert
	
	Company:
	Marotz, Inc.

	 Latest Version:
	1.0
	
	Address:
	13518 Jamul Dr

	 Last Release:
	1997
	
	
	Jamul, CA 91935

	First Release:
	1997
	
	800 Phone Number:
	800-477-6168

	
	
	
	Phone Number:
	619-669-3100

	Pricing Information:
	as of 1Q1998
	
	Fax Number:
	619-669-6914

	Single User Gov’t:
	.
	
	Internet:
	www.marotz.com

	Single User Commercial:
	$995
	
	
	

	Annual Maintenance
	25%
	
	Marketing Contact:
	

	Site License Gov’t:
	
	
	Phone Number
	

	Site License Commercial:
	10 user, $7K
	
	Fax Number:
	

	GSA:
	
	
	E-Mail:
	Info@marotz.com

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	Win 95/NT
	
	OS:
	Win 3.1

	RAM:
	4 Mb
	
	RAM:
	4 Mb

	HD Storage:
	4 Mb
	
	HD Storage:
	4 Mb

	Product Description:
Cost Xpert is an automated tool that supports software costing, scheduling and risk assessment using SLOC, function points, GUI Metrics, top down and bottoms up methodologies. Cost Xpert consists of five main notebook tabs: Project, Volume, Environment, Constraints and Results. Outputs include an input data summary, software development cycle task report, risk report, labor report by labor category, maintenance report, and documentation deliverables report.

19D.4.1 Cost Xpert Inputs

The most important input parameter is size, which can be input as SLOC or function points, GUI Metrics, top down and bottoms up methodologies. All size inputs are converted to equivalent SLOC. When more than one size estimating methodology is used, the user can select which results to be averaged together to create the cost and schedule estimate. Cost Xpert has about thirty inputs which are included in the three other “notebooks tabs”. A help screen for each input assists the user in selecting proper values. Each of the tabs is now summarized.

· Project Tab: Inputs in this tab include primary and secondary programming language; project coefficients (commercial, military, embedded etc.); project standards (commercial, DoD-STD-2167A etc.) identifies documentation required; project type (commercial, embedded etc.) used to identify likely risk factors/defect rates; and project life cycle (client-server, standard-small etc.) used to relate activities to effort. These inputs can all be tailored.

· Environment Tab: The user inputs the factors that influence the efficiency of the software development team such as analyst and programmer capability; applications, virtual machine and language experience; execution time and main storage constraints; virtual machine and requirements volatility; computer turn around time; database size; product complexity and reliability; required reuse and security; and use of modern programming practices and tools. Each of these can be in five levels rated from very low to very high with the definitions and numerical values included on the tab view.

· Constraints Tab: The user can use the constraints tab to assign numerical values to eight constraint areas relevant to the project. These areas are time-cost trade-off, review time, requirements analysis, minimum review time, Beta testing, cushion, overlap and risk tolerance. The estimated percentages can be assigned by the user or left as a default value.

19D.4.2 Cost Xpert Processing

The model performs all computations based on “equivalent SLOC”. The core costing equations involve a relatively simple equation of the form “Effort = (* volume (.” (and (are organization specific coefficients and can be adjusted by the user during calibration. The exact equations used in the model are not defined in the User’s Guide. The environmental factors used in Cost Xpert are very similar to those used in the REVIC model.

19D.4.3 Cost Xpert Outputs

The model’s primary outputs are development effort and schedule, including the optimal effort and schedule for the program(s) being analyzed. Cost Xpert provides staffing profiles by labor category/month. Cost Xpert also has a risk assessment with which the user can perform numerous size, effort, and schedule risk analyses, as well as identifying likely risks to the project and a sensitivity analysis. Maintenance and document deliverable reports summarize those areas. The schedule report is exportable to MS Project. There is a risk assessment tool available (Risk Xpert) that supports both risk assessment and contingency planning/tracking to mitigate risks in a formal, optimized manner.

19D.4.4 Cost Xpert Calibration

Cost Xpert contains a minimum amount of detail for calibrating the model. Basically, it is done by comparing actual historical data to model predicted results, then adjusting the coefficients (and (. Further calibration is made by tailoring the inputs in the Project and Constraints tabs.
19D.4.5 Cost Xpert Life Cycle Considerations

The model predicts both the maintenance effort for each year of the project and the projected maintenance adjusted for inflation. The quantity of software defect estimates and support calls are also estimated based on the original project input data.

19D.5 ForeSight Model

ForeSight is a parametric tool for forecasting time, effort, and cost of non-military software projects; the projects can be new developments, modifications, integration of off-the-shelf applications, maintenance programs, or software upgrades of any type. ForeSight is a tool for all project management tasks related to effort and time forecasting--budgeting, staffing plans, estimate to complete, performance measurement etc. This model has a one button OLE interface to MS Project.

ForeSight is a contemporary adaptation of the PRICE S model to address non-military software projects only. It was based upon the same database used to construct PRICE S. ForeSight, however, was tuned to the commercial and non-military government (AIS) records of the PRICE S database and has some different equations. In addition, several databases unique to ForeSight development were incorporated, among them: the National Software Data Information Repository (NSDIR), the ISBSG (International Software Benchmarking Standards Group) database, and a proprietary database of Object Oriented (OO) applications.

	Product

Information:
	
	
	Vendor Profile:
	

	Product:
	ForeSight
	
	Company:
	Lockheed Martin PRICE Systems

	 Latest Version:
	1.0
	
	Address:
	700 E. Gate Drive, Suite 200

	 Last Release:
	1997
	
	
	Mount Laurel, NJ 08054

	First Release:
	1997
	
	800 Phone Number:
	800-437-7423

	
	
	
	Phone Number:
	609-866-6789

	Pricing Information:
	as of 1Q1998
	
	Fax Number:
	609-866-6591

	Single User Gov’t:
	 $975
	
	Internet:
	www.pricesystems.com

	Single User Commercial:
	
	
	
	

	Annual Maintenance
	20%/yr
	
	Marketing Contact:
	Jennifer Conale

	Site License Gov’t:
	
	
	Phone Number
	609-866-6550

	Site License Commercial:
	
	
	Fax Number:
	609-866-6789

	GSA:
	
	
	E-Mail:
	

	Evaluation/Demo Avail
	both avail free
	
	
	

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	Win 95/NT
	
	OS:
	Win 3.1

	RAM:
	8 MB
	
	RAM:
	8 MB

	HD Storage:
	10 MB
	
	HD Storage:
	10 MB

	
	
	

	Product Description:
ForeSight is a software tool for forecasting time, effort, and cost of non-military software projects; the projects can be new developments, modifications, integration of off-the-shelf applications, maintenance programs, or software upgrades. Project sizing metrics include: SLOC, function points and predictive object points (POPs). ForeSight produces estimates that include: size, schedules, staffing, labor effort, cost, and quality. This model has a one-button interface to MS Project for file creation, importing and updating. It tracks milestones and benchmarks the project against past history. ForeSight supports waterfall, spiral, evolutionary and incremental development projects. It allows Risk Analysis and will generate an Estimate To Complete (ETC).

	

19D.5.1 ForeSight Inputs

One of the primary inputs for the ForeSight model is program size. Size is usually expressed in SLOC that can be input directly by the user or computed using a sizing model included in the ForeSight package. The Sizer model estimates size by SLOC, by using predictive object points (POPs) or by converting a function point count to SLOC. Other key inputs include the following:

· Application: The seven basic functional categories of the inherent software instruction difficulty are: mathematical, string manipulation, data storage and retrieval, on-line, real-time, interactive, and operating system. The result of this classification procedure is summarized in a single value called Application.

· Productivity factor: A parameter that can be calibrated which relates the software program to the organizational capabilities, experience, and individual talents of the team that will perform the software development. This factor should be based upon historical data.

· Complexity: Complexity describes the effects of additional factors affecting the development environment that are directly related to schedule or time, such as a development tools, personnel skills, and potential requirements growth.

· Platform: Platform relates the cost of software development to the requirements of the environment in which the software must operate. It is a measure of the transportability, reliability, testing, and documentation required by the contract.

· Utilization: The proportion of the processor capability used, relative to its available speed and memory capacity, is represented by the variable called Utilization.

· Level of New Design and Code: Percentage of the end product that will require new design and/or coding effort. This input considers the degree of modification or reuse for the software.

There are other inputs for internal and external integration effort, schedule start and end dates, programming language used, and economic factors.

19D.5.2 ForeSight Processing

ForeSight uses a common core equation that relates schedule and effort to software product size and software production capability. The form of the core equation is:

M = A * SizeB;

where M is either effort or time and A and B are functions of software production capability and/or product type. ForeSight adjusts the size measure (in units of lines of code, function points, or object points) for software functionality and amount of reuse. Other areas around the core equation that influence project performance are treated by the forecasting engine. The exact equations are proprietary and are not included in the user’s manual.

19D.5.2 ForeSight Outputs

Results are provided in a number of fix formatted forms, including text and graphic reports, screens, Microsoft Project inputs, and a ForeSight project file in Microsoft Access format. ForeSight produces estimates that include: size, schedules, staffing, labor effort, cost, and quality.

19D.5.3 ForeSight Calibration

The Help menu provides no indication of how to calibrate this model other than by changing the individual attribute ratings or through updating “historical elements”. Historical elements are software systems, subsystems or elements that have been completed and for which cost, schedule or effort information is available. A historical element may be integrated into a new system/subsystem as COTS or as an analogy for forecasting purposes. “In either case ForeSight will calibrate the technical and cost information to establish a unique performance measure for each historical element.”

19D.5.4 ForeSight Life Cycle Consideration

The ForeSight Life Cycle Model, included in the ForeSight package, is a detailed model which computes software operation and support costs. The Profile menu generates a graphical display that is used to control the distribution of effort expended during the support period. The total effort is a combination of four distributions: Defect Detection, Defect Repair, Enhancement, and Adaptation. All four may be viewed on a single Profile screen at once. Associated with every element of an ForeSight Estimation Breakdown Structure is a table of data that enables tailoring of the type listed above. Supplemental data controls the level of tasks and resources estimated for elements.

19D.6 KnowledgePLAN Model (Replaces CHECKPOINT)
The KnowledgePLAN model algorithms are derived from over 6,700 projects. The model is applicable to all types of programs and has its knowledge base updated annually.

	Product

Information:
	
	
	Vendor Profile:
	

	Product:

(replaces
	KnowledgePLAN
CHECKPOINT)
	
	Company:
	Software Productivity Research. Inc.

	 Latest Version:
	2.0
	
	Address:
	1 New England Executive Pk

	 Last Release:
	1998
	
	
	Burlington, MA 01803

	First Release:
	1997
	
	
	

	Free Demo Available:
	slide show & 30 day loan of SW
	
	800 Phone Number:

Phone Number
	781-273-0140

	
	
	
	Fax Number:
	781-273-5176

	Pricing

Information:
	as of 1Q1998
	
	Internet:
	www.spr.com

	Single User Gov’t:
	
	
	
	

	Single User Commercial:
	$5,900
	
	Marketing Contact:
	William Walsh

	Annual Maintenance
	$500/copy
	
	Phone Number
	301-657-6266

	Site License Gov’t:
	
	
	Fax Number:
	301-942-4361

	Site License Commercial:
	25users/$99K
	
	E-Mail:
	billw@spr.com

	GSA:
	
	
	
	

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	Win 95/NT
	
	OS:
	Win 95/NT

	RAM:
	
	
	RAM:
	

	HD Storage:
	
	
	HD Storage:
	

	Product Description:

KnowledgePLAN is a tool that guides the user through the development of a software project estimate and plan using a large knowledge base that is updated annually. KnowledgePLAN combines knowledge-based estimation, “what if” analysis and scheduling functionality within one tool. Work Breakdown Structures can be integrated into a Project (MPX compatible) management tool and allows the PM tool to vary schedules, task assignments and resource allocations. Allows project sizing by SLOC, Function Point and Analogy. KnowledgePLAN creates and refines detailed project plans for a bi-directional interface with Microsoft Project or other enterprise project management system. The tool will track milestones, schedules, resources, actual work effort and defects found.

19D.6.1 KnowledgePLAN Inputs

Like the other models discussed, the primary input for KnowledgePLAN is size. However, KnowledgePLAN is different than most other models in that it works primarily in sizing by analogy or with function points instead of SLOC. The model will accept SLOC, but converts SLOC to function points using conversion factors in the model. In addition to size, the model requires certain inputs for a quick (or basic) estimate, and additional parameters for a detailed estimate. The inputs for each option are now summarized.

 Quick Estimate Inputs: The following inputs are required for both quick and detailed estimates:

 Project description information.
 Project nature: Whether it is a new program, an enhancement, a conversion, reengineering, maintenance etc.

 Project scope: Whether the program is a stand-alone program, program within a system, a disposable prototype etc.

 Project Topology: Whether the project is being implemented as a stand-alone platform, local or wide area network, a client server, or a distributed network.

 Project class: Who is the customer/end-user of the software project such as contract, commercial, government, IT/MIS and is it a single site, multi-site or network.

 Project type: What kind of software is the deliverable; non-procedural application or system with subtypes such as off-line processing, interactive GUI etc.

 Software Products: For sizing by analogy, which system/application is similar in size (small, medium, large) with similar applications such as business, generic, billing etc.

 Detailed Estimate Inputs: KnowledgePLAN has over 100 factors, or project attributes, that can be used to fine-tune the model’s estimates. These are categorized into personnel, technology, process, environmental, product and maintenance which are briefly described. Each factor is rated essentially from “very low” to “very high” in five possible steps with “3” being average or typical. Lower ratings generally result in increased effort and schedule. If the user has no information for a factor, he or she can leave it as “not answered”. The model keeps track of how many attributes have been answered (i.e., 25%) and this is included in the tool’s risk assessment.

 Personnel attributes: These attributes are divided into four subsets: project management, development experience, user personnel experience, and quality personnel experience. Examples of project management attributes are organization structure, team morale, and project management experience.

 Technology attributes: These attributes address the impact of Life Cycle software tools and hardware platforms on the development environment. Examples of attributes are design automation environment, project documentation library, development hardware stability, and terminal response time.

 Process attributes: These attributes address the life cycle methodology used on the project that affects development and quality assurance. Examples are analysis, life cycle, quality, testing, and documentation..

 Environment attributes: These attributes address the importance of organization and office factors.

 Product factors: The Products Attributes dialog box allows the user to characterize any constraints that may affect the ability to fulfill user requirements such as security or performance. The Products Attributes dialog box has two tabs: Requirements and Architecture.

19D.6.2 KnowledgePLAN Processing

The specific algorithms used in this model are not defined in the KnowledgePLAN User’s Guide. The Guide does state that the project estimates are regulated by: algorithms from the project’s assigned knowledge base, by task category inclusion rules, by adjustment rules from the estimation engine, by task/category properties and by task estimation flags. The starting point is the knowledge base assigned to the project by the model based primarily on the answers to the quick estimate inputs. Knowledge bases contain the rules and estimates for the base estimate. The algorithms are tuned to the default settings of the project classification variables and can be viewed/modified by the user.

19D.6.3 KnowledgePLAN Output

The model provides the user with several different outputs. Like most other models, KnowledgePLAN provides an estimate of schedule, staffing, and effort in dollars or person-months in table or Gantt chart views. KnowledgePLAN provides a risk analysis of various input options selected; along with estimates for size, defects, test and reliability, maintenance, documentation, and various productivity parameters.

19D.6.4 KnowledgePLAN Calibration

The user can calibrate KnowledgePLAN by overriding the model’s default values for inputs or quality and productivity rates. This can either be done directly or, more commonly, by creating templates based on historical data. Templates include any values for which the user wants to override the model’s defaults, and are requested as part of a basic estimate. Templates pass along the domain and knowledge base that the new project will use. The KnowledgePLAN User's Guide provides information about template creation.

19D.6.5 KnowledgePLAN Life Cycle Considerations

KnowledgePLAN includes more than fifteen “maintenance” inputs in the “detailed estimate inputs”. Examples are maintenance personnel experience, amount of replacement and restructure planning, number of sites, and customer support. The user can also specify the amount of code to be added or deleted annually. The model estimates the annual cost of maintenance and enhancements for a time period specified by the user, up to 20 years.

19D.7 PRICE-S Model

Martin Marietta Price Systems (initially RCA Price, then GE Price) originally developed this model as one of a family of models for hardware and software cost estimation. Developed in 1977, PRICE-S was the first commercially available detailed parametric software cost model to be extensively marketed and used. The PRICE-S model is proprietary; not all equations are published, although the PRICE-S Reference Manual describes the basic parametric relationships. The model is applicable to all types of software projects. It considers all eight phases of the software development cycle, plus system concept and operational testing phases.

	Product Information:
	
	
	Vendor Profile:
	

	Product:
	PRICE-S
	
	Company:
	Lockheed Martin PRICE Syst.

	 Latest Version:
	3.0
	
	Address:
	700 E. Gate Drive, Suite 200

	 Last Release:
	1997
	
	
	Mount Laurel, NJ 08054

	First Release:
	1977
	
	800 Phone Number:
	800-437-7423

	
	
	
	Phone Number:
	609-866-6789

	Pricing Information:
	As of 1Q1998
	
	Fax Number:
	609-866-6591

	Single User Gov’t:
	 $2,625
	
	Internet:
	www.pricesystems.com

	Single User Commercial:
	$15,000
	
	
	

	Annual Maintenance
	Same, a lease
	
	Marketing Contact:
	Jennifer Conale

	Site License Gov’t:
	$11,813
	
	Phone Number
	609-866-6550

	Site License Commercial:
	$25,000
	
	Fax Number:
	609-866-6789

	GSA:
	
	
	E-Mail:
	

	Evaluation/Demo Avail
	None
	
	
	

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	Unix/Motif or Win 95/NT
	
	OS:
	Unix/Motif or Win 95/NT

	RAM:
	
	
	RAM:
	

	HD Storage:
	
	
	HD Storage:
	

	
	
	
	
	

	Product Description:
The PRICE Software Model Suite (PRICE-S) is a parametric cost and scheduling model that consists of three models to estimate costs and schedules for the development, operation and support of computer software. The PRICE-S Acquisition Model is an application of PRICE empirical modeling methods to the problem of forecasting software cost and schedule. The PRICE-S Sizing Model utilizes three analytical estimating tools to estimate the size of the software being developed. The first tool is used to estimate SLOC based on inputs for qualitative descriptors, quantitative descriptors and sizing factors. The second tool is a Function Point sizer that converts the function point count to SLOC. The third tool is an Object Metric, Predictive Object Points (POPs) for sizing object oriented development projects. The PRICE-S Life Cycle Cost Model is used to develop early costing of the maintenance and support phase for a software project. The Acquisition Model provides the development cost and design parameters to the Life Cycle Cost Model, with the user inputting the support activity and support period. Support cost estimates include Corrective, Enhancement and Growth categories. ForeSight is a new, less expensive software cost model that is compatible with PRICE-S except for military/mission critical software development projects.

	

19D.7.1 PRICE-S Inputs

One of the primary inputs for the PRICE-S model is program size. Size is usually expressed in SLOC that can be input directly by the user or computed using a sizing model included in the PRICE-S package. The Sizer model estimates size by SLOC, by using predictive object points (POPs) or by converting a function point count to SLOC. Other key inputs include the following:

· Application. The seven basic functional categories of the inherent software instruction difficulty are: mathematical, string manipulation, data storage and retrieval, on-line, real-time, interactive, and operating system. The result of this classification procedure is summarized in a single value called Application.

· Productivity factor. A calibratible parameter that relates the software program to the organizational capabilities, experience, and individual talents of the team that will perform the software development. This factor should be based upon historical data.

· Complexity. Complexity describes the effects of additional factors affecting the development environment that are directly related to schedule or time, such as a development tools, personnel skills, and potential requirements growth.

· Platform. Platform relates the cost of software development to the requirements of the environment in which the software must operate. It is a measure of the transportability, reliability, testing, and documentation required by the contract.

· Utilization. The proportion of the processor capability used, relative to its available speed and memory capacity, is represented by the variable called Utilization.

· Level of New Design and Code. Percentage of the end product that will require new design and/or coding effort. This input considers the degree of modification or reuse for the software.

There are other inputs for internal and external integration effort, schedule start and end dates, programming language used, and economic factors.

19D.7.2 PRICE-S Processing

Parametric relationships which combine management perception and historical results are used to relate new software projects to costs and schedules that are typical of the work to be accomplished. Although much material concerning the PRICE-S algorithms has been published, some details concerning the algorithms are proprietary and are not available to the user. It is known that PRICE-S computes a “weight” of software based on the product of instructions and application inputs, which are comparable to hardware volume and density respectively. The productivity factor and complexity inputs are very sensitive parameters that affect effort and schedule respectively. Platform is known to be an exponential input; hence, it can be very sensitive. Other input parameters are used to adjust the “weight” of software for a specific program. A 1988 paper published by PRICE Systems, entitled The Central Equations of the PRICE Software Cost Model, describes many internal algorithms in detail, although some algorithms may have been modified since that time.

19D.7.3 PRICE-S Outputs

PRICE-S computes an estimate in person-months which may be converted to cost in dollars or other currency units. The model estimates schedule by milestones, with a staffing profile. In addition to cost and schedule estimates, PRICE-S provides automatic sensitivity and schedule effect analyses, together with monthly cost and progress summaries to support budgeting, risk analysis, and project tracking.

19D.7.4 PRICE-S Calibration

Organizational performance history serves as input to a calibration mode that fits the model to user specific environments that characterize productivity within a line of business. The PRICE-S model can be run in the ECIRP (PRICE backwards) mode to calibrate selected parameters. The most common calibration is that of the productivity factor, which, according to the PRICE-S Reference Manual, tends to remain constant for a given organization. It is also possible to calibrate platform, application, and selected internal parameters.

19D.7.5 PRICE-S Life Cycle Consideration

The PRICE-S Life Cycle Model, included in the PRICE-S package, is a detailed model which computes software operation and support costs. The Life Cycle Model is designed to be used in conjunction with the Acquisition Model that provides the development costs and design parameters to the Life Cycle Model. The primary inputs are support descriptors such as number of installations, expected growth, and quality and enhancement levels; three calibratible support productivity factors; and separate size and expected growth. The Life Cycle Model outputs cost in three support categories: maintenance, enhancements, modifications and growth. It also outputs a predicted number of delivered defects in the program to be supported.

19D.8 RESERVED

	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	Win 95
	
	OS:
	Win 3.1

	RAM:
	
	
	RAM:
	

	HD Storage:
	
	
	HD Storage:
	

19D.9 SoftCost-Object-Oriented (OO) Model

The SoftCost Object-Oriented (SoftCost-OO) model, developed and marketed by Resources Calculations, Inc. (RCI), evolved from the SoftCost-Ada model developed by Don Reifer which was, in turn, based on the published work of Dr. Robert Tausworthe of the Jet Propulsion Laboratory. In addition to Ada, SoftCost-OO has calibration files for the C++ language and generic object-oriented paradigms. The model is markedly different from the SoftCost-R model, which more closely paralleled COCOMO. The SoftCost-OO model has a database of over 240 Ada, 50 C++, and 120 object-oriented projects. The model is one of a family of models marketed by RCI, which includes SoftCost-R (a software cost estimation tool for data processing, scientific and real-time applications), Asset-R (a function point tool to estimate software size) and SSM (an analogy software sizing model).

SoftCost-OO includes a work breakdown structure (WBS) file editor which allows use of preloaded WBS files, modification of pre-loaded files, or development of a new WBS from scratch. The WBS file editor also checks for correct allocation of duration and effort percentages for each WBS item, and for an allowable set of predecessor activities in a network.

SoftCost-OO is applicable to all types of object-oriented programs and considers all phases of the software development cycle. The model’s equations are published in the SoftCost-OO User's Guide; however, the computer program used to solve these equations and related analyses is proprietary to RCI.

	Product

Information:
	
	
	Vendor Profile:
	

	Product:
	SoftCost-OO
	
	Company:
	Resource Calculations, Inc.

	 Latest Version:
	3.2
	
	Address:
	7853 E. Arapahoe Ct,

Ste. 2500

	 Last Release:
	1996
	
	
	Englewood, CO 80112-1361

	First Release:
	1989
	
	800 Phone Number:
	

	
	
	
	Phone Number:
	303-267-0379

	Pricing Information:
	as of 1Q1998
	
	Fax Number:
	303-674-4869

	Single User Gov’t:
	
	
	Internet:
	www.rcinc.com

	Single User Commercial:
	$8,000
	
	
	

	Annual Maintenance
	25% of 1st year
	
	Marketing Contact:
	Tony Collins

	Site License Gov’t:
	
	
	Phone Number
	011-440-175-366-2572

	Site License Commercial:
	$11,000
	
	Fax Number:
	011-440-175-366-3398

	GSA:
	
	
	E-Mail:
	tcollins@dial.pipex.com

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	DOS
	
	OS:
	DOS

	RAM:
	
	
	RAM:
	

	HD Storage:
	
	
	HD Storage:
	

	Product Description:
SoftCost-OO is an object oriented and reuse software estimation tool. This tool is a PC-based parametric cost model consisting of a screen editor, estimation model, and outputs. Phases covered include software requirements through software testing, including hardware and software integration testing. There are three databases, Ada, C++, and Object-Oriented. SoftCost-OO contains five submodels, sizing, estimating, risk, allocation (effort/labor categories), and life cycle (maintenance). The sizing submodel calculates equivalent source lines of code for projects developed in Ada, C++, or a mix of languages. Function points can also be used. The estimating submodel develops an effort and schedule estimate for a project using parametric and size information provided by the user. The risk submodel allows the user to play "what-if" gaming scenarios by varying effort, schedule, and size. The allocation submodel takes the effort and schedule from the risk submodel and allocates it to the tasks that comprise the Work Breakdown Structure (WBS) for the project. This submodel also allocates effort by labor category across life cycle phases. The life cycle submodel calculates maintenance effort and cost for the system based on the effort selected in the risk submodel. This submodel contains a load-balancing feature that allows a user to assess the impact of fixed workforce on maintenance. Three other models marketed by RCI are required for non-object oriented and non-reuse software development estimates: SoftCost-R is used for estimating real time software in the traditional development mode, SSM is an analogy software sizing tool and Asset-R is a function point sizing tool..

19D.9.1 SoftCost-OO Inputs

A key input of SoftCost-OO is size, which can be input either as SLOC or function points. If SLOC is used, the minimum, most likely, and maximum SLOC are input for new, reused, and modified components. In addition to size, SOFTCOST-OO has twenty-eight other inputs, or attributes, in four categories. Some of the categories and inputs are similar to those used in COCOMO and REVIC. Most of these inputs require a rating ranging from “1” to “6” with “3” being “nominal” or “no-effect”; however, a few inputs such as number of organizations allow other numerical values. A help screen for each input assists the user in selecting proper values. The inputs in each category are as follows:

· Product attributes: The attributes in this category are application type (avionics, command and control, simulation etc.), number of organizations, system architecture (centralized, distributed, multiple processors etc.), organizational interface complexity, staff and computer resources availability, and security requirements.

· Process attributes: The attributes in this category include use of modern development methods, use of tools, tool and environment stability, degree of standardization, scope of support, and use of peer reviews.

· Product attributes: The attributes in this category include a technology usage factor, product complexity, requirements volatility, degrees of real-time and optimization, reuse costs and benefits, and database size.

· Personnel attributes: The attributes in this category include analyst capability; application, language, methodology, and environment experience; team capability, and number of OO projects completed.

SoftCost-OO also has a “Quick Run” capability where, if a similar project has previously been estimated, it can be recalled and only size is required as an input. Once size has been entered, the project can be analyzed like any other project.

19D.9.2 SoftCost-OO Processing

SoftCost-OO is one of the few models for which the mathematical algorithms are completely described in the Reference Manual. The SoftCost-OO equations are:

· PM = A0 * Al * A2 * A3 * A4 * (SLOC)C
· M = B0 * B1 * B2 * (PM)D
PM is the effort in person-months; M is schedule in months; A0 and B0 are calibration constants which depend on the application type input; Al is an architectural constant which depends on the system architecture input; A4 and B2 are scaling factors which vary with size, degree of reuse, and number of OO projects completed; A3 is the product of all inputs not used for other equation factors; and C and D are exponents which vary with number of OO projects completed. The SoftCost-Ada User's Manual illustrates values assigned to ratings for all model inputs to help the user understand the effect of each on effort and schedule. The model also has several other equations, as described in the SoftCost-OO Reference Manual.

19D.9.3 SoftCost-OO Outputs

SoftCost-OO computes a nominal estimate in person-months of effort and schedule for each project, along with a productivity value and an estimate of average number of personnel required. The model then allows for investigation of the sensitivity of each of the input variables and exploration of alternatives to the nominal estimate or changes in schedule, effort, or confidence level. The model also provides schedule outputs for Gantt and PERT charts.

19D.9.4 SoftCost-OO Calibration

The model contains three calibration files; an Ada file, a C++ file, and a generic OO file. The user must select one of these as an input for a model estimate. The user can change these files to reflect his or her environment, but this must be done carefully. RCI plans to develop an on-line calibration capability to work with SoftCost-OO as a separate product.

19D.9.5 SoftCost-OO Life Cycle Considerations

SoftCost-OO contains a separate life cycle model for support costs. In addition to SoftCost-OO developmental inputs, life cycle inputs include annual change traffic, length of the support period, a sustaining engineering factor, and economic factors. There is also a provision for entering and reporting on various staff levels, fixed support costs, and fixed work force levels.

19D.10 RESERVED

	

	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	

·
·
·

19D.11 RESERVED

	

	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	

19D.12 Software Life Cycle Model (SLIM)

This model was developed by Quantitative Software Management (QSM) Corporation, and is based on the work of Lawrence Putnam. SLIM is proprietary; however, much of the theory behind the model is published in previous works by Putnam, and his book Measures of Excellence. A key feature of SLIM is the use of the Rayleigh-Norden curve, illustrated in Figure 19D-1, to allocate resources during a project. The time integral of the Rayleigh-Norden curve results in the “software equation”, which is as follows: (Note: TD is development time.)

Size = (Productivity Factor) * (Effort)1/3 * TD4/3
This software equation is fundamental to SLIM and the entire QSM approach.

SLIM is applicable to all types of projects, although it was originally developed for large projects. It computes costs for all software development phases. The “main build” phase initially computed by SLIM includes the detailed design through system test phases, but the model has the option to include the “requirements and design” phase, including software requirements and preliminary design, and a “feasibility study” phase to encompass system requirements and design.

	Product

Information:
	
	
	Vendor Profile:
	

	Product:
	SLIM
	
	Company:
	Quantitative Software Management, Inc.

	 Latest Version:
	4.0
	
	Address:
	2000 Corporate Ridge, Ste 900

	 Last Release:
	1997
	
	
	McLean, VA 22102

	First Release:
	1978
	
	800 Phone Number:
	800-424-6755

	
	
	
	Phone Number:
	703-790-0055

	Pricing Information:
	as of 1Q1998
	
	Fax Number:
	703-749-3795

	Single User Gov’t:
	
	
	Internet:
	www.qsm.com

	Single User Commercial:
	$16,500
	
	
	

	Annual Maintenance
	
	
	Marketing Contact:
	Joe Quattrone

	Site License Gov’t:
	
	
	Phone Number:
	703-790-0055

	Site License Commercial:
	$35,000
	
	Fax Number:
	703-749-3795

	GSA:
	none
	
	E-Mail:
	

	Eval/Demo Avail:
	Demo free
	
	
	

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	Win 95/NT
	
	OS:
	Win 3.1

	RAM:
	
	
	RAM:
	

	HD Storage:
	
	
	HD Storage:
	

	
	
	
	
	

	Product Description:
SLIM is a software cost, schedule, risk and reliability estimation tool for planning, control and risk analysis of developing software systems. The SLIM model is a combination of a program evaluation and review technique (PERT) algorithm, linear programming, Monte Carlo simulation and sensitivity profiling techniques. It uses expert system methodology and can be customized to a specific organization through the use of historic data. Associated software tools that can be procured from QSM to augment the capabilities of SLIM are SLIM Control (controls Software projects by employing advanced statistical process control techniques for monthly “health checks” using the SEI recommended “core metrics”) and size planner.

19D.12.1 SLIM Input

The significant user inputs to the model are as follows:

· Size: Size is one of the two key user inputs to SLIM. Size is usually input as SLOC. SLIM does allow the user to input function points which are converted to SLOC using a ratio, or “gearing factor”, that may be specified by the user. The user may also input the programming language used and, as in REVIC, inputs the least, most likely, and greatest size for each program to be analyzed.

Figure 19D-1. The Rayleigh-Norden Curve

Error! Not a valid link.
· Productivity Index (PI): The other key input, PI, is a calibratible parameter that can either be input directly by the user or is computed by the model based on a multitude of additional inputs. The PI is a number that can vary from 1 to 40; higher values result in lower cost and schedule. It is also a very sensitive parameter; a change in one integer value can result in a twenty-five to thirty percent change in cost. SLIM uses fractions of PIs for fine-tuning. The inputs for computing or adjusting PI are as follows:

 Application type: This is the key determinant of PI when the user asks the model to compute it. Some of the nine application types are micro-code, avionics, command and control, telecommunications, and business. If a program is of multiple application types, the user can specify percentages of each type.

 Tooling and methods: This set of inputs includes factors such as hardware familiarity, use of various types of automated tools, and robustness and adherence to a development standard. For this set of additional inputs and for the next two sets, the user rates each factor from 1 to 10, with 5 usually being average.

 Technical difficulty: This set of inputs includes the amount of new algorithms and logic, platform stability, and various complexity factors.

 Personnel profile: This set of inputs includes management effectiveness, skill level, experience, degree of communication, and morale factors such as motivation and cohesiveness.

· Other Inputs: The user can specify other factors that affect cost and schedule, including the following:

 Phase adjustments: The user can specify the staffing profiles to be used during each phase of development, and can customize development phases.

 Importance: The user can state the relative importance of cost, schedule, and quality for the program being estimated.

 Constraints: The user can specify maximum cost or effort, maximum schedule, minimum and maximum staffing levels, and minimum mean-time-to-defect (MTTD) for the final product. The user can also specify the desired probability of meeting each constraint. The model will attempt to meet all constraints or determine an “optimal” solution that has the greatest chance of meeting all specified constraints.

19D.12.2 SLIM Processing

Although the actual equations for SLIM are proprietary, it is known that SLIM relies heavily on the Rayleigh-Norden curve and its inherent assumptions. The original curve assumed that the maximum manpower was allocated at TD, the development time, and that there was a 60:40 ratio of support costs to development costs. SLIM adjusts this curve as required to meet project-peculiar inputs, especially for smaller programs, and user-specified constraints.

The shape of the curve is determined by three key parameters within the model: size, PI, and the manpower buildup index (MBI). The MBI is a number that varies between -3 and 10. It reflects the rate at which personnel are added to a project. Higher ratings indicate faster buildup rates, and result in shorter schedules but higher costs. The Rayleigh curve, as shown in Figure 19D-1, is shifted upward and to the left as MBI increases. Lower size or higher PI values result in both lower costs and shorter schedules; the Rayleigh curve is shifted downward and to the left. Although MBI is a significant parameter, the user cannot input MBI directly. Instead, it is determined primarily by the user-specified constraints.

19D.12.3 SLIM Outputs

The primary output of SLIM is an optimal solution to meet the constraints specified by the user. In the absence of constraints, the model will compute a “minimum time” solution for which the user can reduce cost by relaxing the schedule. The “staffing view” of the model shows a staffing profile along with the model’s computed cost, effort, schedule, peak staffing required, and MTTD. The staffing view also shows the probabilities of meeting each of the specified constraints. The model also has a “ballpark view” and a “consistency view” where time, effort, MTTD, average staffing, and PI are compared with similar projects in the SLIM database. SLIM has numerous report options for risk analysis, defect profiles, and other areas of interest to the user. The model has a very impressive feature that allows the user to vary a certain parameter on a chart with the mouse and see the effect on the other parameters, including risk.

19D.12.4 SLIM Calibration

The PI for SLIM can (and should) be calibrated using historical data. The model has on-line calibration capability for the user to calibrate a PI from historical projects. All that is required are program size, development time in months, person man-months of effort, and, if available, MTTD for each historical project. PI is determined to the nearest tenth (e.g., 8.3) in calibration.

19D.12.5 SLIM Life Cycle Considerations

SLIM has an optional “maintenance” phase output which uses SLIM development inputs to compute man-months, schedule, and staffing profiles. The user can not specify any support-peculiar inputs except the shape of the curve (Rayleigh, stair step, exponential, straight line, or level load). The model computes all support outputs based on extrapolation of the staffing curve for the time after software development is completed using the user-specified curve shape, and the time to achieve either 99% or 99.9% reliability as specified by the user.

19D.13 System Evaluation and Estimation of Resources Software Estimating Model (SEER-SEM)

One of a family of models marketed by Galorath Associates, SEER-SEM is based on the work of Randall Jensen in his paper “An Improved Macro-Level Software Development Resource Estimation Model.” It uses the Rayleigh-Norden curve (described in SLIM) to allocate resources during a software project and to estimate cost and schedule. SEER-SEM is applicable to all types of programs, and is applicable to all phases of the software development cycle except system requirements and design. The model is proprietary.

	Product

Information:
	
	
	Vendor Profile:
	

	Product:
	SEER-SEM
	
	Company:
	Galorath Associates, Inc.

	 Latest Version:
	4.5
	
	Address:
	100 N. Sepulveda Blvd,

Ste. 1801

	 Last Release:
	1996
	
	
	El Segundo, CA 90245

	First Release:
	
	
	800 Phone Number:
	

	
	
	
	Phone Number:
	310-414-3222

	Pricing Information:
	as of 1Q1998
	
	Fax Number:
	310-414-3220

	Single User Gov’t:
	
	
	Internet:
	www.gaseer.com

	Single User Commercial:
	$15,000
	
	
	

	Annual Maintenance
	
	
	Marketing Contact:
	H. Kim Lett

	Site License Gov’t:
	
	
	Phone Number:
	703-893-5733

	Site License Commercial:
	
	
	Fax Number:
	

	GSA:
	
	
	E-Mail:
	klett@gaseer.com

	Evaluation/Demo Avail:
	Demo free
	
	
	

	System Requirements:
	
	
	
	

	Recommended:
	
	
	Minimum:
	

	OS:
	Win 95/NT; Mac Sys 7
	
	OS:
	Win 3.1, Mac Sys 6

	RAM:
	
	
	RAM:
	

	HD Storage:
	
	
	HD Storage:
	

	Product Description:
SEER-SEM is a software development and maintenance analysis CASE tool that estimates cost, effort, schedule, reliability and risk. The primary driver of the program is software size along with descriptions of rework required for pre-existing software and software designed for reuse. A separately purchased tool SEER-SSM can be used to improve software sizing estimates by using historical information in concert with relative comparison methods. SEER-SSM produces size estimates in terms of SLOC or functions. SEER-SEM uses knowledge bases to describe development scenarios including staff loading, dynamic reallocation of resources and labor mix for methodologies.

19D.13.1 SEER-SEM INPUTS

The inputs for this model can be divided into three categories: size, knowledge base inputs, and input parameters. Each category of inputs is now summarized.

· Size: The user can input size using one of three measures: SLOC, traditional function points, or Galorath function points. SEER converts function points to SLOC before generating an estimate. All code is further categorized as “new”, “preexists designed for reuse”, or “preexists not designed for reuse”. For pre-existing software, the user must specify the amount of code deleted, and the percentages of redesign, recoding, and retest required to modify or reuse the program for the current application. The model uses PERT; therefore, the user must input a “minimum”, “most likely”, and “maximum” value for all size inputs.

· Knowledge Base Inputs: SEER-SEM contains a myriad of knowledge bases for different types of software. The knowledge bases assign default values to the input parameters described below based on the type of software selected. The user must specify the following six inputs to specify the knowledge base to be used by the model.

· Platform: The operating environment of the program, such as avionics, ground-based, or manned space.

· Application: The overall function of the software, such as radar, command and control, mission planning, or testing.

· Acquisition method: The method in which the software is to be acquired, such as development, modification, or re-engineering.

· Development method: The method used for development, such as waterfall development, evolutionary development, object oriented, prototype or incremental development.

· Development Standard: The Standard used in development and degree of tailoring to describe documentation, quality, and test standards such as ISO, 2167A etc.

· Class: This input is primarily for user-defined knowledge bases.

· Input Parameters: SEER-SEM contains more than thirty input parameters with which the user can refine an estimate. As in COCOMO, the values normally range from “very low” to “very high”. As in size, the user must specify a least, greatest, and most likely value for each input. A user can use the default values generated by the chosen knowledge base if no further information is available. The primary categories of input parameters and a brief description of each follows.

· Complexity: Assesses the difficulty of the software.

· Personnel capability and experience: The parameters in this category, similar to the “personnel attributes” of COCOMO, measure the caliber of personnel used on the project.

· Development support environment: Measures the usage of modern practices and tools, availability of resources, and frequency of changes to the environment.

· Product development requirements: Measures the stringency of quality, documentation, and test requirements, as well as the frequency of changes in requirements.

· Reusability requirements: Measures the degree of reuse needed for future programs and the percentage of software affected by reusability requirements.

· Development environment complexity: Measures the complexity of the language, application, and host development system used.

· Target environment: Measures special constraints for the target environment such as memory, special displays, and security (which is the most sensitive input parameter in the model).

· Other input parameters: There are also special inputs for schedule constraints, labor rates, integration requirements, personnel costs, metrics, and software support.

19D.13.2 SEER-SEM Processing

Although the model is proprietary, some of the equations of the SEERSEM model can be found in the SEER-SEM User's Manual and in articles published by Randall Jensen. SEER-SEM computes an effective technology rating (ETR) based on several input parameters. The model apparently uses the Rayleigh-Norden curve to compute the required effort. SEER-SEM also contains windows where the user can compare two projects, examine several risk analysis graphs, and see what effect a changed input parameter will have on the overall development cost and schedule.

19D.13.3 SEER-SEM Outputs

SEER-SEM allows the user to select a variety of output reports and charts. A “quick estimate” provides a snapshot of size effort, schedule, and ETR anytime during the estimating process. Optional outputs include a basic estimate, staffing by month, cost by month, cost by activity, person-months by activity, and software metrics including delivered defects.

19D.13.4 SEER-SEM Calibration

The model may be calibrated by computing an ETR from past programs, by computing cost and schedule multipliers from past programs, or both. The cost and schedule multipliers are linear multipliers with a nominal value of one (which would have no effect). The ETR, multipliers, or both can be incorporated into a custom knowledge base for future programs of the type calibrated. One limitation of the ETR is that the user cannot input it directly as a model input; it must be adjusted by changing other input parameters. The cost and schedule multipliers, however, can be input directly. In addition to ETRs, knowledge bases and parameter setting may be calibrated.

19D.13.5 SEER-SEM Life Cycle Considerations

SEER-SEM contains an optional “maintenance” output report which provides annual costs and person-months for each year of a user-specified schedule in four categories: corrective, adaptive, perfective, and enhancements. The user can specify the support time period desired along with several other support-unique parameters. These include annual change rate, number of support sites, expected program growth, and differences between development and support personnel and environment, and degree of rigor (level of support).

19D.15 Other Models

The models discussed above do not encompass the entire arena of software parametric cost models; there are numerous other models available. For example, there are several variants of COCOMO available in addition to REVIC. Several companies have software cost models that are used solely within the company which developed the model. New models developed for more general use do appear occasionally. The models contained in this appendix were chosen because they were the ones included in most other Parametric Software Cost Estimating references (therefore are assumed to be the most widely used), they were free, or were new/inexpensive with a new approach. A list of other potential estimating tools is included in Appendix C of the Software Technology Support Center’s (STSC) Report on Project Management and Software Cost Estimation Technologies, dated April 1995, available for Internet download at www.stsc.hill.af.mil.

19E. Commercial-Off-The-Shelf (COTS) Software

Table of Contents

	19E.1
	Introduction .
	19E-2

	19E.2
	COTS Software Five Panel Model .
	19E-3

	19E.2.1
	COTS Market Phase .
	19E-4

	19E.2.2
	COTS Qualify Phase .
	19E-4

	19E.2.3
	COTS Adapt Phase.
	19E-6

	19E.2.4
	COTS Assembly Phase .
	19E-6

	19E.2.5
	COTS Update Phase .
	19E-7

	19E.3
	COTS Cost Estimation Model Status .
	19E-8

	19E.3.1
	COCOTS Model .
	19E-9

	19E.3.2
	Other COTS Cost Models .
	19E-11

	19E.4
	COTS Cost Estimation/Pricing Equations .
	19E-13

	19E.4.1
	COTS Qualification Costs .
	19E-15

	19E.4.2
	COTS Adaptation Costs .
	19E-15

	19E.4.3
	Glue Code Assembly Costs .
	19E-15

	19E.4.4
	Increased Application Effort Due to COTS Volatility
	19E-16

	19E.4.5
	Software System with COTS Components Costs
	19E-16

	19E.5
	Impact of COTS on System Testing .
	19E-19

	19E.6
	COTS Support .
	19E-19

	19E.6.1
	Configuration Management Data .
	19E-19

	19E.6.2
	Maintenance Policy .
	19E-20

	19E.6.3
	Sustainability .
	19E-20

	19E.7
	COTS Software Risks .
	19E-21

	19E.7.1
	COTS Functionality or Performance .
	19E-21

	19E.7.2
	COTS Interoperability .
	19E-22

	19E.7.3
	COTS Evolution .
	19E-23

	19E.7.4
	COTS Vendor Behavior .
	19E-24

	19E.7.5
	COTS Risk Summary .
	19E-25

	19E.8
	Licensing Schemes .
	19E-25

	19E.9
	Summary .
	19E-27

19E. Commercial-Off-The-Shelf (COTS) Software

19E.1 Introduction

This appendix summarizes the special considerations related to incorporating COTS (commercial-off-the-shelf) software components into a system. These considerations vary so much from standard software development approaches that special versions of software cost estimating models are being created to deal with the peculiarities. If a COTS software product is to be used as a stand-alone item, then some subsections such as those considerations related to “glue code” do not apply. For a COTS software product that will be integrated into a system, all the sections of this appendix apply. The majority of this introduction is extended from the model rationale used by the University of Southern California (USC), Center for Software Engineering (under the direction of Dr. Boehm) for the new COTS version of COCOMO (discussed in section 19E.3).

One of the more significant changes in software development practice over the past twenty years is the greatly increased emphasis being placed on building systems incorporating pre-existing software in order to keep overall development and maintenance costs as low as possible. One source of pre-existing software is commercial vendors who supply self-contained off-the-shelf components that can be plugged into a larger software system to provide capability that would otherwise have to be custom-built. The two primary distinguishing characteristics of COTS software are 1) that its source code is not available to the application developer (software developer that will incorporate a COTS component into a larger system), and 2) that its evolution is not under the control of the application developer.

The rationale for building COTS based systems is that development time is reduced by taking advantage of existing, market proven, vendor supported products, thereby reducing overall system development costs. In the case of using such components as databases and operating systems, this is almost certainly true. However, there are little data available concerning the relative costs of using the component-based approach. Due to a of the lack of access to product source code and a lack of control over product evolution, there is a trade-off that results using the COTS approach. New software development time can indeed be reduced; however, the cost of software component integration generally increases. Moreover, if integrating COTS components, there will be additional system costs to negotiate, manage, and track licenses to ensure uninterrupted operation of the system. Moreover, using COTS software also brings with it a host of unique risks quite different from those associated with software developed in-house.

The true cost of integrating a COTS software component into a larger system includes the traditional costs associated with new software development such as the cost of requirements definition, design, code, test, and software maintenance. In addition, the cost of integration includes: the cost of licensing and redistribution rights; royalties; effort needed to understand the COTS software; pre-integration assessment and evaluation; post-integration certification of compliance with mission critical or safety critical requirements; indemnification against faults or damage caused by vendor supplied components; and costs incurred due to incompatibilities with other needed software and/or hardware.

The following sections explain the system development model phases, cost estimation model status, cost estimation/pricing equations, testing/supportability/risk considerations, and licensing schemes for COTS software.

19E.2 COTS Software Five Panel Model
The COTS model pictured in Figure 19E-1 represents various activities that address different aspects of turning a set of COTS components into a COTS-based system. This model was obtained from the Software Engineering Institute (SEI) at Carnegie Mellon University, who have authored a number of Special Reports and hosted Workshops devoted to COTS software. This section will cover in greater detail than section 19.2.4, the model’s five phases and outline the some of the cost/risk considerations associated with them.

Figure 19E-1. COTS Five Panel Model

Error! Not a valid link.
19E.2.1 COTS Market Phase

The COTS Market phase deals with the market survey and analysis activities that determine the viable candidates for a particular component, from both a business and a technical perspective. Discussing the many aspects regarding a market analysis is outside the scope of this appendix. More information can be obtained by referring to DRAFT Air Force Handbook 60-113, Buying COTS Handbook (http://www.safaq.hq.af.mil/eng_ind_env_policy/syseng/policies/ dcotshbc.html). The Air Force Handbook has an extensive section and attachment on conducting a COTS market analysis.

19E.2.2 COTS Qualify Phase

The Qualify phase activities investigate the hidden interfaces and other characteristics and features of the candidate products. Per SEI in their article “Component-Based Software Development/COTS Integration,” component qualification is a process of determining "fitness for use" of previously-developed components that are being applied in a new system context. Qualification of a component can also extend to include qualification of the development process used to create and maintain it (for example, ensuring algorithms have been validated, and that rigorous code inspections have taken place).

Continuing with the SEI article, there are two aspects of component qualification: discovery and evaluation. For discovery, the properties of a component are identified. Such priorities include component functionality (what services are provided) and other aspects of a component's interface (such as the use of standards.) These properties also include quality aspects that are more difficult to isolate, such as component reliability, predictability, and usability. In some circumstances, it is also reasonable to discover "non-technical" component properties, such as the vendor's market share, past business performance, and process maturity of the component developer's organization. Discovery is a difficult and ill-defined process, with much of the needed information being difficult to quantify and, in some cases, difficult to obtain.

The most difficult problem in the qualify phase is to determine the characteristics of the available COTS products so that a product which best meets the requirements may be selected. The result of this discovery process is to reveal the necessary information to make a selection and identify possible sources of conflict and overlap, so that the component can be effectively assembled and evolved. The following excerpt from a Crosstalk article describes the selection process.

“Experience shows that the selection process for one major product can require three to six months of calendar time, multiple engineers and programmers, access to sophisticated suites of hardware and software environments, and will likely entail the purchase of vendor-provided training classes.”

March 1998 STSC Crosstalk

The rationale behind this time and expense are summarized by Richard D. Stutzke in his paper “Cost Factors for COTS Integration.” Typically the COTS capabilities which are of interest to the designer are the completeness of the functions provided, the COTS product’s architecture, and the maturity and expected life of the product. The product’s architecture is particularly important since COTS products often make assumptions about the environment in which they will operate. The product's architecture dependencies also affect the partitioning of the components of the COTS product and their dependencies. These dependencies can have significant cost impacts when the various components are integrated.

Dr. Stutzke states that during the evaluation process, the analyst must build a mental model which relates the general and specific knowledge for both the system being built and the COTS product being considered for inclusion into that system. He referred to three models that the analyst must construct to understand a software program:

· Structure (“top-down hierarchy of elements)

· Control flow (“program”)

· Data flow (“situation”)

A key point concerning these models is that knowledgeable people are essential to correctly evaluate COTS components expeditiously.

19E.2.3 COTS Adapt Phase

Because individual components are written to meet different requirements, and are based on differing assumptions about their context, components often must be adapted when used in a new system. A March 1998 article in STSC Crosstalk on COTS states that COTS software does not require coding but does require integration with other components. As a result, it starts the life cycle as a partially developed component. The design, construction, and integration and test development stages must be recast to accommodate early COTS software integration and testing as well as to develop “Glue Code” (interface software, configuration files, scripts, utilities, and data files) which is required to make the COTS software deliver its intended functionality.

Referring again to the SEI article, components must be adapted based on rules that ensure conflicts among components are minimized. The degree to which a component's internal structure is accessible suggests different approaches to adaptation:

· White Box. Access to source code allows a component to be significantly rewritten to operate with other components.

· Grey Box. Source code of a component is not modified but the component provides its own extension language or application programming interface (API).

· Black Box. Only a binary executable form of the component is available and there is no extension language or API.

Each of these adaptation approaches has its own positives and negatives; however, White box approaches, because they modify source code, can result in serious maintenance and evolution concerns in the long term. Wrapping, bridging, and mediating (included as part of the “Glue Code”) are specific programming techniques used to adapt Grey- and Black-box components.

19E.2.4 COTS Assembly Phase

The Assembly phase is the integration of the adapted components into a software architectural infrastructure. Components must be integrated through some well-defined infrastructure that provides the binding that forms a system from the disparate components. This infrastructure supports component assembly and coordination, and differentiates architectural assembly from ad hoc “glue”. Referring again to the March 1998 STSC Crosstalk article, waiting until late in the development process to test and integrate COTS products, particularly those that are complex, will not give adequate time to master all their intricacies and complexities. COTS product testing and integration activities must be interwoven into more of the development process stages.

Extended from Dr. Stutzke’s paper, Table 19E-1 summarizes two types of potential problems that may occur during the assembly phase. First, it is very difficult to determine exactly how hard it will be to tailor and integrate the COTS product into the new system. As indicated in the table, the steps are first to obtain a detailed, understanding of the component, then the component must be modified and tested. In some cases the product must be documented as well.

Table 19E-1. Managing Potential Assembly Phase Problems

	Predicting how hard it will be to integrate the code

· Obtain a detail understanding

· Modify

· Test

· Document (if required)

Incorporating new versions during integration

· Cost

· Strategy

The second potential problem is that new versions of the COTS products are often released during the integration process. This can affect the cost of development, therefore some sort of strategy is needed to manage this. The likelihood of new versions increases if the project lasts longer that one year.

The particular process used by the development team can significantly affect the cost of integrating COTS components. The three important process areas are installing and integrating the component initially, installing new versions of the components which become available during the integration process, and tracking and controlling the baselines.

19E.2.5 COTS Update Phase

The Update phase acknowledges that new versions of components will replace older versions; in some cases, components may be replaced by different components with similar behavior and interfaces. These replacement activities may require that glue code be rewritten, and they suggest the advantage of well-defined component interfaces that reduce the extensive testing otherwise needed to ensure that the operation of unchanged components is not adversely affected.

Per the SEI article, component-based systems may seem relatively easy to evolve and upgrade since components are the unit of change. To repair an error, an updated component is swapped for its defective equivalent, treating components as plug-replaceable units. Similarly, when additional functionality is required, it is embodied in a new component that is added to the system. This is a highly simplistic (and optimistic) view of system evolution however. The new component will never be identical to its predecessor and must be thoroughly tested, both in isolation and in combination with the rest of the system. As a result, replacement of one component with another is often a time-consuming and arduous task. Wrappers must typically be rewritten, and side-effects from changes must be found and assessed.

Dr. Stutzke concluded that the “volatility” of COTS products is a source of significant uncertainty and risk, increasing in magnitude as the length of the system’s planned service life increases. A COTS product is volatile in two ways: features and price. COTS products are market-driven and evolve rapidly in response to consumer and competitive pressures. The vendor adds (and sometimes deletes) features based on many factors. Regarding pricing, maintenance pricing is the most volatile (assuming the initial purchase occurs shortly after the evaluation is completed.)

Changes in maintenance price are primarily of interest for estimating the operating costs of the deployed system. Typically, vendors encourage the user to discontinue use of a product they want to retire by increasing the annual maintenance fees (to cover the reduced number of active users.) The may also offer attractive price reductions on the purchase price of new, replacement products. The obsolescence of product features and/or changes in maintenance price may cause significant redesign and refurbishment of the deployed system long before its useful life is over. Of course, these costs impact the lifecycle costs of the system.

19E.3 COTS Cost Estimation Model Status

The USC’s Center for Software Engineering under the direction of Dr Boehm is in the process of developing a version of COCOMO tailored for the unique requirements of estimating COTS software. This model is called COCOTS (COnstructive COTS). COCOTS is considered experimental and evolving. The latest information on this model can be obtained at website http://sunset.usc.edu/COCOTS/cocots.html. The contents of this section were extended from the information obtained from the COCOTS web site. COCOTS’ goal is the development of a comprehensive COTS integration cost modeling tool. The approach taken was to first examine a wide variety of sources in an attempt to identify the most significant factors driving COTS integration costs, and then to develop a mathematical form for such a model.

19E.3.1 COCOTS Model

The current model provides insight into the most important factors that should be considered when estimating the cost of integrating COTS components, regardless of the specific tool or methodology used to perform that estimation. “The model represents a prototype implementation of the first of four submodels being proposed for COCOTS, namely, the glue code submodel. The model is not yet mature enough for the estimates it provides to be used with a high level of confidence. However, the cost parameters contained within the model and the criteria used to rate those parameters as described in the user guide certainly offer much insight into the questions a software cost estimator should be considering when working on a system to be built with COTS components.”

The USC COTS integration cost model version 1.0 takes the following form:

SIZE = KSLOC (1.0 + BRAK/100)

[image: image9.wmf](

)

Õ

=

b

=

13

1

i

i

EM

*

SIZE

*

A

PM

COST = (PM)*($$/PM)

Table 19E-2. Definition of Symbols

	Symbol
	Description

	A
	A linear scaling constant to provide an accurate effort estimate when all EM are nominal, provisionally set to 12.0.

	(
	A nonlinear scaling constant that accounts for the influence of factors that have exponential effects, provisionally set to 1.0.

	BRAK
	Breakage: Percentage of COTS glue code thrown away due to requirements volatility.

	KSLOC
	Size of COTS component glue code expressed in thousands of source lines of code.

	PM
	Person Months of estimated COTS integration effort.

	$$/PM
	Estimated average labor rate per person-month.

	EM
	The thirteen Effort Multipliers or cost drivers, each of which assumes one of five possible values based upon the following ratings: very low, low, nominal, high, and very high. Nominal ratings have a multiplier value of 1.0.

USC suggests the following procedure when attempting to use their model for a COTS integration cost estimation exercise:

1.) Estimate the amount of glue code that is expected to be needed to integrate a set of COTS products into a software application. Only the integration or glue code linking the COTS component to the larger application should be included in the estimate, not the code internal to the COTS component itself.

2.) Estimate the percentage of glue code that will be lost due to breakage during the integration effort. This will be a function of the number of COTS packages being integrated into the new system overall, the average number of updated product releases expected per COTS package over the life of the system development, and the average interface breakage per product release. Breakage refers to COTS integration code that must be reworked as a result of a change in system requirements. Breakage also includes integration code required when a new release by the vendor of a COTS product which necessitates that the newer version of the product be installed before system delivery. Breakage does not refer to code that must be reworked due to bugs introduced by the programmer, or due to defects in design. The Breakage percentage is best estimated by acquiring knowledge of two things: 1) the vendor’s past history regarding releases of the COTS product in question or of similar products that the vendor markets, and 2) the customer’s past history regarding demanding changes in requirements after development and COTS product integration has begun.

3.) Determine the effective size of the glue code development effort by feeding the estimates derived in steps 1 and 2 into the formula for SIZE.

4.) Assign each effort multiplier a rating on the given scale from very low to very high, which best characterizes the unique conditions pertaining to the COTS integration effort.

5.) Determine the overall estimated effort for this integration task by feeding the estimate for SIZE and the rated effort multipliers into the formula for Person-months (PM).

6.) Determine the estimated cost by multiplying estimated PM by the estimated average labor rate ($$/PM).

This completes the COTS integration cost estimation procedure.

19E.3.2 Other COTS Cost Models

In preparing to create the COCOTS model, USC researched other available COTS models. They discovered that quantitative COTS integration models available for review in the public domain were almost non-existent. Three models were discussed in the COCOTS paper, two by Science Applications International Corp. (SAIC) and one by Loral Federal Systems. USC’s discussion of these models is summarized here to provide further understanding into the cost drivers that influence COTS integration costs.

One model proposed by Richard Stutzke of SAIC centered on the issue of COTS volatility, which is, the frequency with which a COTS vendor releases new versions of its software. (This has been identified as one of two primary determinants in the cost of using COTS software, the other being the actual size of the interface or “glue” code needed to integrate a given COTS product.) His model suggested a way to quantify the added cost associated with using a COTS product that has significant volatility. It is included here to assist the analyst if faced with this situation. In brief, Dr. Stutzke proposed the following formula:

Extra Cost due to Volatility = CV*AC*IS*(CS + CC)

Where :

CV = Component volatility (number of new releases of the COTS component over life of the project).

AC = Architectural coupling (number of other components which interface with the given COTS component).

IS = Apparent interface size in terms of the number of entry points, procedures, functions or other methods used to access the COTS component, weighted by the number of arguments passed.

CS = Cost of screening the COTS component and all the other components with which it interfaces to determine the impact of a new release.

CC = Cost of making changes to impacted components.

As of USC’s writing, no attempt had been made to implement this model. It also addresses only one aspect, although an important one, associated with integrating COTS software.
Still another approach to modeling COTS integration costs was taken at SAIC. This second model addressed more the end user costs of using COTS software. The model takes this form:

[image: image10.wmf][

]

cost)

code

glue

or

Interface

(COTS

cost)

training

product

COTS

licenses)

of

(Number

*

license)

product

COTS

of

(Cost

Cost

n

Integratio

COTS

+

+

=

This model highlights some important sources of cost, but ignored the details of determining the last term, the cost of developing the COTS product glue code.
An alternate model that attempts to address the issue of estimating the cost of developing COTS interface code has been described by Tim Ellis of Loral Federal Systems. This model was well into the implementation stage (when the article was written), having been calibrated to a number of internal Loral COTS integration projects, with more continually being added to the model’s calibration database. Mr. Ellis describes the COTS integration model in these general terms:

Work Units = IQ _ (Size, Drivers)

Productivity = Labor-months/Work Unit

Estimated Effort in LM = WU*P

Where:

Size = Size of the COTS interface or glue code in function points.

Drivers = Set of seventeen COTS integration cost drivers.

LM = Labor-months.

P = Productivity.

WU = Work units.

The greatest influence the Loral model had on the development of the USC COCOTS integration cost model came from its seventeen cost drivers, which served as one of the starting points in the definition of the USC COCOTS model drivers. The disadvantage of the Loral model is that the total size of the COTS component is generally thought to be irrelevant, and the Assessment & Assimilation (AA) and Percentage of Integration & Test Modification (IM) COCOMO parameters were not considered to be adequate descriptors of the factors affecting COTS integration efforts.

19E.4 COTS Cost Estimation/Pricing Equations

Estimating the cost of a software system that includes COTS components requires the inclusion of more cost areas than typical software development efforts. Figure 19E-2 provides a general illustration of the standard software development costs included in the Software Cost Estimating Process of section 19.2. Figure 19E-3 shows the four additional cost areas when COTS components are integrated to form a complete system. This section will discuss the general cost equations that can be used to calculate the costs in these four areas. These two figures and the equations in this section were adapted from a briefing given in August 1998 by Dr. Boehm and Christopher Abts titled “COCOTS Software Integration Cost Model.”

Figure 19E-2. SW Cost Estimates without COTS

Error! Not a valid link.
Figure 19E-3. SW Cost Estimates with COTS in System

Error! Not a valid link.
19E.4.1 COTS Qualification Costs

COTS Qualification costs typically have two parts, the initial filtering efforts to identify candidates and then the final selection effort to select the winning COTS vendor. The equation for the filtering effort done during discovery takes the form:

[image: image11.wmf]

EMBED Equation.3[image: image12.wmf]÷

ø

ö

ç

è

æ

=

Candidate

Effort

Filtering

Average

)

Candidates

COTS

#

(

Effort

Total

Final selection is based upon the evaluation of the candidate components for certain functionality attributes. The general equation to estimate this effort has the form:

[image: image13.wmf]÷

ø

ö

ç

è

æ

=

å

Candidate

 Attribute

per

Effort

t

 Assessmen

Ave

)

Candidates

COTS

#

(

Effort

Total

Attributes

19E.4.2 COTS Adaptation Costs

These costs are associated with tailoring the selected COTS components to meet requirements and take the form:

[image: image14.wmf](

)

(

)

i

Complexity

i

Level

 Adapting

at

Effort

Ave

Level

at

 Adapted

Candidates

COTS

#

Effort

Total

å

=

USC uses five adaptation effort complexity levels (very low to very high), differentiated by the difficulty of needed scripts, API iterations, etc.

19E.4.3 Glue Code Assembly Costs
This effort takes the form of the equation used in the currently existing COCOTS Glue Code model. Section 19E.3.1 contains additional detail on the variables in this equation. Further information and a copy of this model can be obtained from the COCOTS website http://sunset.usc.edu/COCOTS/cocots.html):

[image: image15.wmf](

)

(

)

[

]

(

)

Õ

b

+

=

s

Multiplier

Effort

*

Breakage

1

Size

*

A

Effort

Total

Where:

A = Linear scaling constant

Size = Size of the glue code in SLOC or Function Points

Breakage = Glue code due to changes in the requirements and/or COTS volatility

Effort Multipliers = 13 parameters, each with a range from very low to very high

(= Architectural scale factor with settings from very low to very high.

19E.4.4 Increased Application Effort Due to COTS Volatility

Approximate Application Effort Model:

[image: image16.wmf](

)

(

)

COTS

EM

*

100

COTS

BRAK

*

Effort

n

Applicatio

Effort

Total

ú

û

ù

ê

ë

é

=

Where:

BRAK COTS = % application code breakage due to COTS volatility

BRAK = % application code breakage otherwise

EM = Product of Effort Multipliers

Using the above four equations added together (which form the basis of COCOTS) would provide an estimate for the COTS software integration effort. This effort could then be converted to a cost estimate by multiplying it by the average cost of a person-month. There are other COTS costs that also must be added in: the costs to obtain and support the COTS components (COTS SW), the maintenance costs for the COTS integration software (COTS SW integration) which can be estimated using the completed version of COCOTS and the costs associated with any required COTS hardware (COTS HW).

19E.4.5 Software System with COTS Components Costs

The total cost of a software system that includes COTS components could be estimated by adding together the following:

Table 19E-3 Total Cost of Software System

	Cost Components
	Cost Estimation Model

	New SW development (not COTS)
	SW cost models in Appendix D

	New SW maintenance (not COTS)
	SW cost models in Appendix D

	COTS SW integration
	COCOTS

	COTS SW integration maintenance
	COCOTS

	COTS SW
	See below

	COTS HW
	See below

Estimating the cost of obtaining the COTS software for each COTS component would take the following form:

[image: image17.wmf]

rt]}

Cost[suppo

+

licenses]

.

Cost[maint

{=

Maint.]

&

Cost[Op.

+

ll]}

Cost[insta

+

ing]

Cost[train

{=

mentation]

Cost[imple

+

}

platforms]

#

features,

#

licenses,

Cost[#

{=

ses]

Cost[licen

+

office]

sition

Cost[acqui

=

SW

COTS

 Estimating the cost of obtaining the COTS Hardware would take the following form:

[image: image18.wmf]

M]i}

&

Cost[O

i

mentation]

Cost[imple

istion]i

{Cost[acqu

office]

sition

Cost[acqui

HW

COTS

+

+

+

=

Where:

i = number of processors, storage, workstation, communications
Unit costs vary by quantity, platform, and time. if all the items are not procured at the same time, there will be a need to consider time-phasing of acquisition, implementation, operations & maintenance. The biggest challenge will be the complex, dynamic COTS price structures.

19E.5 Impact of COTS on System Testing
This section (extended from the draft Air Force Handbook 60-113, “Buying COTS”), is included in order that the analyst may consider these two questions when pricing a proposal or developing a cost estimate. Does the proposal/estimate cover these tests? Is some testing missing or is there too much testing? An important advantage of COTS software is reduced delivery time. This is realized through the elimination of the research and development phase of the acquisition cycle and subsequent development test and evaluation. In general, testing is not required when the software will be used and maintained by similarly skilled people in the same environment as that for which it was designed and existing data (contractor or other sources) provides reasonable answers to performance and supportability issues. If COTS software components are being integrated into a larger system, then system integration testing and selected component testing would be required. Operational testing is strongly recommended if operational or support environments differ from the contractor's. Further, preselection testing in the Qualify phase should be conducted to minimize technical, operating and support risk.

For stand-alone COTS in a commercial-like (same-environment) application, no testing should be required if the application is the same as commercial use of the item. If there is any doubt, an analyst should acquire and qualify a test sample prior to selection. After delivery of a successful item, any deficiencies that appear should be covered by the vendor's commercial warranty.

For COTS embedded in a larger system, feasibility testing to qualify a test sample should be done prior to selection and integration into the system. Development Test and Evaluation (DT&E) of the complete system is required. Hardware and software integration tests should be conducted as well as user testing (typically, operational test and evaluation (OT&E)) at the system level. COTS deficiencies that appear during or after system-level testing should be covered by the vendor's commercial warranty. Special considerations for specific testing areas are as follows:

Development Testing. Development testing should be conducted at the system level but not at the COTS assembly level since COTS is already developed. If an item does not meet performance standards/requirements, select other COTS or go for a non-COTS design effort.

Operational Testing. Selection of COTS items does not automatically mean there will be no need for operational testing. However, operational testing for COTS components (or stand-alone COTS) should be limited or waived if market investigation data and, as applicable, pre-selection qualification testing will satisfy the requirements. Operational testing, as previously mentioned, should be conducted for a system with integrated COTS components.

Supportability Evaluation. The impact of COTS on system supportability probably requires testing that should include reliability testing, organizational level maintainability testing, human factors engineering tests, standardization measurements and safety analysis.

Compatibility Testing. Follow-on compatibility testing in fielded systems could be conducted for all significant hardware or software revisions to a COTS item. This testing should verify that the interfaces are not violated, and be completed before the Government accepts the change. Reviewing the vendor's service bulletins and engineering change orders (ECOs) can help identify which changes would require testing.

Quality Assurance Provisions. A quality assurance provision should be specified for each system-level functional and physical requirement in the contract. However, quality control of individual COTS items should be covered by the vendor's commercial warranties.

19E.6 COTS Support
The rapidly changing market and technology of COTS items means that it will have a limited useful life cycle. In their draft Handbook 60-113, the “Buying COTS,” the Air Force considers a number of important factors that could impact the cost in the support of commercial items. The Handbook recommends that support requirements should be defined before SIR release. Support requirements should also include an up-front definition of the system support requirements to the item level, a lifetime support strategy and appropriate contract language to implement the support strategy. Acquisition contracts should include support such as maintenance, support equipment and training for the total expected life cycle as well as pre-planned product improvements or when replacements are needed.

A market analysis should be performed while the requirements document is still in draft form. If COTS items are to be embedded in a larger system by a prime contractor, be sure that the prime contractor acquires all the required information from the proposed vendors.

The preferred method of support for COTS products is through local acquisition and locally-acquired contractor service. Any decision for life-cycle contractor logistics support must be accompanied by adequate planning. In the absence of a formal contractor support agreement, plan for an appropriate level of organic management and support for COTS assets.

When determining the support for a commercial item, it is recommended to evaluate original contractor's support, alternate vendors' support, and Government support with regards to impact on competition, operational requirements, total support costs, and support availability.

Three major areas of concern in COTS support are configuration management and data; maintenance policy; and sustainability.

19E.6.1 Configuration Management Data

Except under very unusual circumstances, it is not wise to demand full design disclosure engineering data, for system support. Even if the vendor was agreeable to selling the data, it would quickly be obsolete because the government would not have design control. Contractors can unilaterally change the design as necessary to suit their customer or market requirements. COTS designs should be documented to the system interfaces level.

For COTS software, the government should acquire and maintain appropriate licensing and subscription services (vendor field change orders and software releases) throughout the life of the system. If the Government secures change authority, it must clearly define the limits of what the Government can change, and restrict alterations in any way that would void the licensing or subscription service. Independent software changes by the Government, or a Government freeze to an earlier COTS software version, will turn COTS into a unique product.

19E.6.2 Maintenance Policy

Employment of COTS will usually lock the government into two-level maintenance: organizational and depot. The most desirable support concept is contract repair, preferably via competition. A good strategy is to price support options while the original buy is still in competition. The riskiest course is an in-house depot repair, which should be selected only under exceptional conditions because it will have to be a specialized operation if even possible at all. The vendor might refuse to sell the data and tools to develop a capability.

19E.6.3 Sustainability

Because of the design control the Government has had over in-house developmental software, many systems have been maintained and upgraded to serve multiples of their original design life. Market pressures usually send commercial designs more quickly into obsolescence not so easily dealt with. It is not uncommon for this to occur within five years, which means that retrofit funding should be routinely projected approximately at the time of original system fielding. There should be cost estimates for maintenance and eventual replacement of COTS software. Licensing and subscription service represent a significant annual cost, and replacement cost will also be considerable.

19E.7 COTS Software Risks

This section is extended from the USC COCOTS model’s “COTS Integration Modeling Study”, dated June 1997. There are four key COTS integration characteristics that make COTS integration significantly different from other forms of software development (including maintenance). These characteristics require traditional approaches to software development to be significantly revised when considering program risk. The characteristics are:

· No control over a COTS product’s functionality or performance.

· Most COTS products are not designed to interoperate with each other.

· No control over a COTS product’s evolution.

· COTS vendor behavior varies widely.

19E.7.1 COTS Functionality or Performance

If the source code can be modified, it’s not really COTS and its future becomes the Government’s responsibility. Even as black boxes, big COTS products have formidable complexity: Microsoft people have indicated that Windows 95 has 25,000 entry points.

Resulting Pitfalls

· Using the waterfall model on a COTS integration project. With the waterfall model, the Government specifies requirements, and these determine the capabilities. With COTS products, the situation is reversed: the capabilities determine the "requirements" or the delivered system features.

· Using evolutionary development with the assumption that every undesired feature can be changed to fit the needs. COTS vendors do change features, but they respond to the overall marketplace and not to individual users.

· Believing that advertised COTS capabilities are real. COTS vendors may have had the best of intentions when they wrote the marketing literature, but that doesn’t help when the advertised feature isn’t there.

Resulting Recommendations

· Use risk management and risk-driven spiral-type process models. Assess risks via prototyping, benchmarking, reference checking, and related techniques. Focus each spiral cycle on resolving the most critical risks.

· Perform the equivalent of a "receiving inspection" upon initial COTS receipt to ensure that the COTS product really does what it is expected to do.

· Keep requirements negotiable until the system’s architecture and COTS choices stabilize.

· Involve all key stakeholders in critical COTS decisions. These can include users, customers, developers, testers, maintainers, operators, or others as appropriate.

19E.7.2 COTS Interoperability

Interoperability problems can cause COTS integration cost and schedule overruns by factors of four to five.

Resulting Pitfalls

Lack of COTS interoperability exacerbates each of the previously cited pitfalls. Some additional direct pitfalls are:

· Premature commitment to incompatible combinations of COTS products. This can happen in many ways: haste, desire to show progress, politics, or uncritical enthusiasm with features or performance. Short-term emphasis on rapid application development is another source of this pitfall.

· Trying to integrate too many incompatible COTS products. Four can be too many. In general, trying to integrate more than a half-dozen COTS products from different sources would indicate a high-risk program.

· Deferring COTS integration till the end of the development cycle. This puts the most uncontrollable problem on the critical path as delivery is approached.

· Committing to a tightly-coupled subset of COTS products with closed, proprietary interfaces. These restrict the downstream options; once committed, it’s hard to back out.

Resulting Recommendations

The previously cited recommendations on risk-driven processes and co-evolving requirements and architecture are appropriate here. In addition:

· Include demonstrations of COTS interoperability and scalability as risks to be resolved.

· Go for open architectures and COTS substitutability. In the extremely fast-moving software field, the ability to adapt rapidly to new “best-of-breed” COTS products is competitively critical.

19E.7.3 COTS Evolution

Again, COTS vendors respond to the overall marketplace and not to individual users. Upgrades are frequently not downward compatible. Old releases become obsolete and unsupported by the vendor. If COTS architectural mismatch does not happen initially, COTS architectural drift can easily occur later. Current COTS-intensive systems often have higher software maintenance costs than traditional systems, but good practices can make them lower.

Resulting Pitfalls

Lack of evolution controllability exacerbates each of the previously cited pitfalls. Some additional direct pitfalls are:

· "Snapshot" requirements specifications and corresponding point-solution architectures. These are not good practices for traditional systems; with uncontrollable COTS evolution, the maintenance headaches become even worse.

· Under-staffing for software maintenance, and lack of COTS adaptation training for maintenance personnel.

· Tightly coupled, independently evolving COTS products. Just two of these will make maintenance difficult; more than two is much worse.

· Assuming that uncontrollable COTS evolution is just a maintenance problem. It can attack development schedules and budgets as well.

Resulting Recommendations

The previously-cited risk-driven and architecture-driven recommendations are also appropriate here. In addition:

· Stick with dominant commercial standards. These make COTS product evaluation and substitutability more manageable.

· Use likely future system and product line needs as well as current needs as COTS selection criteria. These can include portability, scalability, distributed processing, user interface media, and various kinds of functionality growth.

· Use flexible architectures facilitating adaptation to change. These can include message/event-based software bus, encapsulation, and layering.

· Carefully evaluate COTS vendors’ track records with respect to predictability of product evolution.

· Establish a pro-active system release strategy, synchronizing COTS upgrades with system releases.

19E.7.4 COTS Vendor Behavior

Vendor behavior varies widely with respect to support, cooperation, and predictability. Sometimes a COTS vendor is not even the developer, just a value-added re-seller. Given the three major sources of COTS integration difficulty above, an accurate assessment of a COTS vendor’s ability and willingness to help out with the difficulties is tremendously important. Experience indicates that the value of a COTS vendor’s support follows a convex curve with respect to the vendor’s size and maturity. Small vendors often lack the capability to support the user; very large vendors have the capability, but not the motivation.

19E.7.5 COTS Risk Summary

Per Dr. Stutzke, designers and managers should realize that there may be a large hidden price to be paid for the use of COTS components incorporated into a software system. The most frequently encountered problem is the need to update the COTS product during integration. Such updates often cause incompatibles to arise between COTS products that previously worked together. Increases in the price of the annual license and maintenance agreements can affect operating costs. Liabilities for damage caused by the failure of a COTS product may be very costly. More difficult to predict is the loss of critical features as the vendor upgrades the product in response to market pressures (including withdrawal of the product from the market, in the extreme case). Such losses can cause significant redesign of the deployed system long before its useful life is over.

19E.8 Licensing Schemes
Referring again to Dr. Stutzke’s article, the license terms for the COTS products can affect the cost of the overall system and even affect the choice of the architecture. Dr. Stutzke adapted a memo by Gibson and Mankofsky which grouped their license types into the six types shown in Table 19E-4. The names used were defined to be as descriptive as possible since there is no standard terminology used by vendors to refer to these types of licenses. This makes it extremely difficult to compare the costs of products offered by different vendors.

Tab1e 19E-4. Types of COTS Software License

	Universal Site

	· Covers use on all machines at a geographic location

	· Annual (Payment of maintenance fee provides yearly update)

	· Perpetual (No maintenance fee. Repurchase required.)

	· Number of users is unlimited

	Site

	· Covers one machine/platform type at a given location

	· Number of users is unlimited

	· May be annual or perpetual

	Node-Locked

	· Covers use on a single machine (tied to machine’s serial number)

	· May be annual or perpetual

	Floating

	· Allows multiple users on a client/server network

	· Controlled by one or more “1icense servers"

	· Buy seats ("sockets") or tokens ("resource units tied to platform type)

	Metered

	· Usage measured and charged (or limited to some specified amount per day, month etc.

	· Can be combined with node locked, floating, platform or token schemes

	Public Domain

	· Pay distribution charge

	· May pay registration fee or donation ("shareware”)

	· May be free to non-profit organization or Government agency. (Must purchase the rights for commercial resale)

The license costs are primarily of interest in making the "buy or build" decision during the Product Design phase or the Proposal phase (since this is when the price must be determined). The cost of developing the products must be traded against the cost of purchasing the necessary number of copies and integrating them into the system. In-house developed products have a significant non-recurring engineering cost which is paid once. All subsequent copies of the component may; however, be used for essentially no cost for the life of the system, regardless of how many copies of the product are produced. For a COTS product, the non-recurring engineering cost is absorbed by the vendor but the buyer (developer of the new system) must pay a license fee for each copy of the component which is used. Complex trades-off analysis must be made between functionality, cost, schedule, risk, etc., involving not just the development and production cost but also the operating costs of the deployed system when performing a make (develop) or buy (COTS) decision.

Other factors may affect the cost of a COTS product. First, discounts may be available if multiple copies are purchased (volume discounts.) Second, reduced prices may be offered if several related products are purchased together (“bundling"). Third, sometimes the first year of maintenance is provided free with the initial purchase of the product. Fourth, if the product is utilized during the development process, it is possible that an additional warranty must be purchased prior to delivery of the system to the customer. Fifth, there may be liability costs in the event COTS components cause failure in the system during operations. Such costs could cover damage to equipment, injures to personnel and loss of service. Last, there may be refurbishment costs associated with the loss of critical functions as the product evolves in response to market pressures. The functions needed may be removed from later versions of the product.

Multiple types of licenses must be mixed to obtain the necessary number of copies of a product. Sometimes a full license is purchased to obtain a complete set of documentation and several other "right to use” licenses are purchased to allow copies of the "full" product to be used on other platforms. Such mixing and matching can have significant impacts on the total cost of a system.
19E.9 Summary
The utilization of COTS software components/products is intended to reduce the cost and schedule of software development programs. If the COTS component is a stand-alone product, it probably will. However, for integrating COTS components into a larger system, there are many factors that must be considered. This appendix has outlined the primary considerations and the basic cost equations that apply to COTS software cost estimating and pricing.

Bibliography

Abdel-Hamid, Tarek, and Stuart E. Madnick. Software Project Dynamics: An Integrated Approach. Englewood Cliffs, NJ: Prentice-Hall, 1991.

Abts, Christopher M. “COTS Software Integration Cost Modeling Study.” Los Angeles, CA: University of Southern California, June 1997.

Albanese, Frank Jr. “The Application of Regression-Based and Function Point Software Sizing Techniques to Air Force Programs.” AFIT Thesis GCA/LSY/88S-1. Air Force Institute of Technology, 1988.

Albrecht, A. J., and J. E. Gaffney. "Software Function, Source Lines of Code, and Development Effort Prediction: A Software Science Validation." IEEE Transactions on Software Engineering Vol SE-9, No.6, November 1983.

ANSIJ-STD-016. Software Development. New York: American National Standards Institute, 1995

Ayres, Bradley J., and William M. Rock. “Development of a Standard Set of Software Indicators for Aeronautical Systems Center.” AFIT Thesis GSS/ENC/92D-1. Air Force Institute of Technology, September 1992.

Bailey, Elizabeth K., et al. A Descriptive Evaluation of Automated Software Cost-Estimation Models. Alexandria, VA: Institute For Defense Analysis, October 1986.

Barber, Brent L. “Investigative Search of Quality Historical Software Support Cost Data and Software Support Cost-Related Data.” AFIT Thesis GSS/LSY/91D-1. Air Force Institute of Technology, 1991.

Boehm, Barry W. "A Spiral Model of Software Development and Enhancement, Tutorial: Software Engineering Project Management.” Abstract. Washington, DC: IEEE, 1988.

_____. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981.

Boehm, Barry W. and Christopher M. Abts. “COCOTS Software Integration Cost Model: An Overview.” Presentation handouts, 1998.

_____. “COTS/NDI Software Integration Cost estimation & USC-CSE COTS Integration Cost Calculator v2.0 User Guide.” Los Angeles, CA: University of Southern California, September 1997.
Boehm, Barry W., et al. "COCOMO 2.0 Program." Presentation handouts. ISPA 1994 Conference, Munich, Germany, 1994.

_____. "The COCOMO 2.0 Software Cost Estimation Model." Abstract. International Society of Parametric Analysts, 1995.

_____. "An Overview of the COCOMO 2.0 Software Cost Model." Abstract. Software Technology Conference, 1995.

Bozoki, G. J. SSM User's Guide. Redwood City, CA: GJB Associates, 1984.

Carnegie Mellon Distance Education Home Page. Slides. http://www.sei.cmu.edu/mse/msd/html: Carnegie Mellon University, 1998.

Carney, David J. and John Foreman. “Component-Based Software Development/COTS Integration.” Software Technology Review Search Results (http://www.sei.cmu.edu/str/descriptions/cbsd_body.html): Carnegie Mellon University, 1998.

Carney, David J. and Patricia A. Oberndorf. “The Commandments of COTS: Still in Search of the Promised Land.” Crosstalk, The Journal of Defense Software Engineering Vol 10, No.5, May 1997.

Cheadle, William G. "DOD-STD-2167 Impacts on Software Development." ISPA Journal of Parametrics Vol VI, No.4, December 1986.

Christensen, David S., and Daniel V. Ferens. "Using Earned Value for Performance Measurement on Software Development Projects." Acquisition Quarterly Spring, 1995.

College of Business Administration Website. IS322 course material. www.cba.uc.edu: The University of Cincinnati, February 1998.

Computer Science Telecommunications Program Website. CS457 course material. www.ctsp.umkc.edu: University of Missouri-Kansas City, February 1998

DeMarco, Tom. Controlling Software Projects. Englewood Cliffs, NJ: Prentice-Hall, 1982.

DOD-STD-1521B. Technical Reviews and Audits for Systems, Equipment, Munitions, and Computer Software. 4 June 1985.

DOD-STD-1703. Software Products Standards. 12 February 1987.

DOD-STD-2167A. Defense System Software Development. 29 February 1988.

Ferens, Daniel V. "A Common Sense Approach to Software Cost Estimation." ISPA Journal of Parametrics Vol VI, No.2, June 1986.

_____. "Software Support Cost Models: Quo Vadis?" ISPA Journal of Parametrics 4.4, December 1984.

Ferens, Daniel V., and Mark T. Hunter. "Use of Cost plus Award Fee Contracts for Software Development Efforts." Journal of Cost Analysis, Spring 1996.

Fulton, Richard, and Sherry Stukes. Space and Missiles Center Software Database User's Manual Version 1.0. Oxnard, CA: Management Consulting and Research, 1994.

Gaffney, John E. & Durek, Thomas A. Software Reuse--Key to Enhanced Productivity; Some Quantitative Models SPC-TR-88-015. Herndon, VA: Software Productivity Consortium, April 1988.

Galorath Associates. SEER-SEM User's Manual. Los Angeles, CA: Galorath Associates, September 1994.

_____. SEER-SEM User's Manual Release 4.5. Updated. El Segundo, CA: Galorath Associates, September, 1996.

_____. SEER-SSM User's Guide. Marina del Rey, CA: Galorath Associates, 1991.

Galorath, Dan, and Karen McRitchie. "Software Size Measures: Source Lines of Code and Functions." Presentation handouts. Marina del Rey, CA: Galorath Associates, 1992.

Garnus, David (Editor). IFPUG Function Point Counting Practices Manual Release 3.4. Westerville, OH: IFPUG, July 1992.

George A., and Roy C. Russell. “Software Cost Estimating Models: A Comparative Study of What the Models Estimate.” AFIT Thesis GCA/LAS/93S-4. Air Force Institute of Technology, 1993.

Gerlich, Rainer, and Ulrich Denskat. "A Cost Estimation Model for Maintenance and High Reuse." Proceedings of the European Software Cost Modeling Conference 1994 Ivrea, Italy. 1994.

Glass, Robert L., and Ronald A. Noiseux. Software Management Guidebook. Englewood Cliffs, NJ: Prentice-Hall, 1981.

Henderson, Garland S. “The Application of Function Points to Predict Source Lines of Code for Software Development.” AFIT Thesis GCA/LSY/92S-4. Air Force Institute of Technology, 1992.

Herbert, Chris E., and Robert W. Ratliff. Database Management System and Calibration Tool. Denver, CO: Martin Marietta Astronautics Group, April 1993.

Humphrey, Watts S. Managing the Software Process. Reading, MA: Addison-Wesley, 1990.

IEEE-STD-729. IEEE Standard Glossary of Software Engineering Terms. 1983.

Ikatura, Minoru, and Akio Takayanagi. "A Model For Estimating Program Size and Its Evaluation." Proceedings of the Sixth International Conference on Software Engineering 1982.

International Function Point User's Group. IFPUG Function Point Counting Practices Manual Version 4.0. Westerville, OH: IFPUG, 1995

Institute for Systems Analysis Corporation. ISA Cost Expert User's Guide. Bethesda, MD: Institute for Systems Analysis, 1990.

ITT Research Institute. Test Case Study: Evaluating the Cost of Ada Software Development. Lanham, MD: ITT Research Institute, April 1989.

Jensen, Randall W. "An Improved Macro-Level Software Development Resource Estimation Model." Proceedings of the Fourteenth Asilomar Conference on Circuits, Systems, and Computers 1981.

Jones, Capers. “Programming Languages Table.” Burlington, MA: Software Productivity Research, March 1995.

_____. “What Are Function Points.” Burlington, MA: Software Productivity Research, March, 1995.

_____. Applied Software Measurement. New York: McGraw-Hill, 1991.

_____. Programming Productivity. New York: McGraw-Hill, 1986.

McCabe, Thomas J., and G. Gordon Schulmeyer. "System Testing Aided By Structural Analysis." Proceedings of the 1982 IEEE COMPSAC November 1982.

MIL-STD-480B. Configuration Control-Engineering Changes, Deviations and Waivers. 17 July 1992.

MIL-STD-490. Specification Practices. 31 August 1995.

MIL-STD-498. Software Development and Documentation. 5 December 1994.

MIL-STD-499A. Military Standard: Engineering Management. 1 May 1974.

Mosemann, Lloyd K., II, et al. Guidelines for Successful Acquisition and Management of Software Intensive Systems, Hill AFB, UT: Software Technology Support Center, September 1994.

Musa, John D. et. Al. Software Reliability: Measurement, Prediction, Application. New York: McGraw-Hill, 1987.

Ourada, Gerald L. “Software Cost Models: A Calibration, Validation, and Comparison.” AFIT Thesis GSS/LSY/91D-11. Air Force Institute of Technology, 1991.

Parikh, G., and N. Zvegintzov. "The World of Software Maintenance." Tutorial on Software Maintenance. Piscataway, NJ: IEEE Computer Society Press, 1983.

Park, Robert E. "An Open Letter to Cost Model Evaluators." ISPA Journal of Parametrics Vol IX, No.3, October 1989.

Paulk, M.C., et al. Capability Maturity Model for Software, Version 1.1 (CMU/SEI-93-TR-24). Pittsburgh, PA: Carnegie Mellon Univ., February 1993.

Pressman, Roger S. Software Engineering: A Practitioner's Approach. 3rd ed. New York: McGraw-Hill, 1992.

PRICE Systems. ForeSight 1.0 Evaluation Copy. Computer software. Mt. Laurel, NJ: Lockheed-Martin Corporation, June 1997.

_____. The Central Equations of the PRICE Software Cost Model. Moorestown, NJ: PRICE Systems, 1988.

_____. PRICE-S Reference Manual. 3d ed. Moorestown, NJ: Martin-Marietta, October 1993.

Putnam, L. H., and A. Fitzsimmons. "Estimating Software Costs." Datamation September-November 1979.

Putnam, Lawrence H., and Ware Myers. Measures of Excellence. Englewood Cliffs, NJ: Prentice-Hall, 1992.

Quantitative Software Management Corporation. Size Planner User's Manual Version 1.0. McLean, VA: QSM, 1987.

_____. SLIM 3.0 For Windows User's Manual. McLean, VA: Quantitative Software Management, 1993.

Ratliff, Robert W., et al. SASET 3.0 User's Guide. Denver, CO: Martin Marietta Astronautics Group, April 1993.

Reifer, Donald J. ASSET-R Version 2.0 User's Manual. Torrance, CA: Reifer Consultants, Inc., January 1989.

_____. SoftCost-Ada User's Manual, Version 2.2. Torrance, CA, Reifer Consultants, Inc., 1991.

_____. SoftCost-R User's Manual Version 8.0. Torrance, CA: Reifer Consultants, Inc., 1989.

Resource Calculations, Inc. SoftCost-OO User's Guide Version 3.1. Denver, CO: Resource Calculations, Inc., 1994.

Roetzheim, William H., and Reyna A. Beasley. "Best Practice in Software Project Cost and Schedule Estimating." Cost Xpert User's Manual. Jamul, CA: Marotz, Inc., 1997.

Selby, Richard, D. Schmidt, and J. Berney. "Metric Driven Analysis and Feedback Systems for Enabling Empirically-Guided Software Development." Proceeding of the 13th International Conference of Software Engineering, May 1991.

Selby, Richard. Software Reuse: Emerging Technology. Piscataway, NJ: IEEE Computer Society Press, 1988.

Sofstar Systems. COSTAR User's Manual Version 3.00. Amherst, NH: Sofstar Systems, 1989.

Software Engineering Institute. Checklists and Criteria for Evaluating the Cost and Schedule Estimating Capabilities of Software Organizations, CMU/SEI-95-SR-005. Pittsburgh, PA: Carnegie Mellon Univ., January 1995.

_____. Workshop on COTS-Based Systems, CMU/SEI-97-SR-019. Pittsburgh, PA: Carnegie Mellon Univ., November 1997.

Software Productivity Research, Inc. CHECKPOINT For Windows User's Guide Release 2.2.2. Burlington, MA: Software Productivity Research, 1993.

_____. KnowledgePLAN User's Guide Version 2.0. Burlington, MA: Software Productivity Research, April 1997.

Stutzke, Richard D. “Cost Factors for COTS Integration”, Proceedings of the 10th International COCOMO User's Conference. October 1995.

_____. "Software Cost Estimating Technology: A Survey", Proceedings of the 10th International COCOMO User's Conference. October 1995.

SYSCON Corporation. Avionics Software Support Cost Model: Final Report (AFWAL-TR-82-1173). Washington, DC: SYSCON, 1983.

Thibodeau, Robert. An Evaluation of Software Cost Estimating Models. Huntsville, AL: General Research Corporation, 10 April 1981.

United States. Department of Defense. Joint Logistics Commanders. Practical Software Measurement--A Guide to Objective Program Insight. 27 March 1996.

_____. Software Technology Support Center. Report on Project Management and Software Cost Estimation Technologies. Hill AFB, UT: STSC, April 1995.

_____. U. S. Air Force Acquisition Systems Engineering Homepage. “DRAFT Air Force Handbook 60-113, Buying Commercial Off-The-Shelf” http://www.safaq.hq.af.mil/eng_ind_env_policy/syseng/policies/dcotshbc.html: SAF/AQRE, October 1998.

_____. U. S. Air Force Cost Analysis Agency. REVIC Software Cost Estimating Model User's Manual, Version 9.0. Springfield, VA: NTIS, 18 February 1991.

_____. U. S. Air Force Data and Analysis Center for Software Homepage. “Function Point FAQ.” http://mach10.rome.kaman.com: DACS, September 1997.
_____. U. S. Air Force Material Command “White Paper #2 on Methods for Evaluating Similar Items.” Dayton, OH: AFMC, January 1996.

_____. U. S. Air Force. Space Systems Cost Analysis Group, Software Methodology Handbook. Springfield, VA: NTIS, June 1995.

_____. U. S. Naval Center for Cost Analysis. Software Development Estimating Handbook. Arlington, VA: NCCA, February 1998.

_____. U. S. Navy. Naval Command, Control, Surveillance Center, RDT&E Division Software Engineering Process Office. Software Size, Cost and Schedule Estimation Process. Springfield, VA: NTIS, June 1996.

United States. Department of Energy Financial Assistance Homepage. “10 CFR 600.145 Cost and price analysis.” http://www.pr.doe.gov/ f600toc.html: DOE, August 1998.

United States. Federal Aviation Administration Acquisition Management System Homepage. FAA Pricing Handbook, 1998. http://fast.faa.gov/ v898/index.htm.

______. Federal Aviation Administration. FAA Cost Estimating Handbook, 1998.

United States. General Accounting Office. Air Traffic Control: Improved Cost Information Needed to Make Billion Dollar Modernization Investment Decisions. Washington: GPO, January 1997.

United States. General Services Administration. “Contract Pricing Reference Guides.” Federal Acquisition Internet Homepage. http://www.gsa.gov/fai Washington, August 1998.

United States. National Aeronautics and Space Administration. Parametric Cost Estimating Handbook. Springfield, VA: NTIS, Fall 1995.

_____. Software Engineering Laboratory. Cost and Schedule Estimation Study Report (SEL-93-002). Greenbelt, MD: SEL, November 1993.

University of Illinois Computer Science Home Page. CS302 course material. www-courses.cs.uiuc.edu: University of Illinois at Urbana-Champaign, 1998

University of Southern California Center for Software Engineering COCOTS Home Page. http://sunset.usc.edu/COCOTS/cocots.html: University of Southern California, 1998.

Wheaton, Marilee J. "Functional Software Sizing Methodology." ISPA Journal of Parametrics. Vol VI, No.1, March 1986.

Whetstone, Mark J. “Developing Software Size Estimating Relationships Based on Functional Descriptions of the Software.” AFIT Thesis GSM/LSY/86S-24. Air Force Institute of Technology, 1986.

Youll, David P., Making Software Development Visible. Chichester,

England: John Wiley and Sons, 1990.
� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

A stand alone item

does not need interfaces with other software components

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

�PAGE \# "'Page: '#'�'" �

19-ii

1/10/2005

1

1/10/2005

_978780256.unknown

_978780267.unknown

_978780272.unknown

_978780274.unknown

_979446948.xls
Fig17-11

		Coding

		Unit Test

		System Testing

		Operation

&L&D &T&R&F &A

&CPage &P

Mean Fault Density

Defects/KSLOC

99.5

19.7

6.01

1.48

_979447025.xls
Fig19-10

		34943		34943

		34973		34973

		35004		35004

		35034		35034

		35065		35065

		35096		35096

		35125		35125

		35156		35156

		35186		35186

		35217		35217

		35247		35247

		35278		35278

		35309		35309

		35339		35339

		35370		35370

		35400		35400

&L&D &T&CVSCS PPI S/W UPGRADES&R&F &A

New Code

Reused Code

SLOC

148730

103514

148730

103514

148730

103514

148730

103514

148730

103514

161920

76351

161920

76351

171644

78393

171644

78393

173707

44930

175004

45172

175004

45172

175004

45172

196129

44788

196129

44788

237854

28296

_979446713.xls
Fig17-12

		34151		34151		34151

		34182		34182		34182

		34213		34213		34213

		34243		34243		34243

		34274		34274		34274

		34304		34304		34304

		34335		34335		34335

		34366		34366		34366

		34394		34394		34394

		34425		34425		34425

		34455		34455		34455

		34486		34486		34486

		34516		34516		34516

		34547		34547		34547

		34578		34578		34578

		34608		34608		34608

		34639		34639		34639

		34669		34669		34669

		34700		34700		34700

		34731		34731		34731

		34759		34759		34759

		34790		34790		34790

		34820		34820		34820

		34851		34851		34851

		34881		34881		34881

		34912		34912		34912

		34943		34943		34943

		34973		34973		34973

		35004		35004		35004

		35034		35034		35034

		35065		35065		35065

		35096		35096		35096

		35125		35125		35125

		35156		35156		35156

		35186		35186		35186

		35217		35217		35217

		35247		35247		35247

		35278		35278		35278

		35309		35309		35309

		35339		35339		35339

		35370		35370		35370

		35431		35431		35431

		35462		35462		35462

		35490		35490		35490

		35521		35521		35521

		35551		35551		35551

		35582		35582		35582

		35612		35612		35612

		35643		35643		35643

		35674		35674		35674

		35704		35704		35704

		35735		35735		35735

&L&D &T&CVSCS PPI S/W UPGRADES&R&F &A

Predicted Defects

Actual Defects

Closed Defects

Defects

5317.98

4550

5316

4640

5316

4730

5316

4820

5316

4910

5316

5000

5592

5090

5592

5180

6096

5270

6096

5360

6198

5450

6198

5540

6198

5630

6198

5720

6198

5810

6450

5900

6450

5990

6450

6080

6552

6170

6564

6200

6822

6200

6858

6275

6912

6350

6912

6383

6133

6912

6416

6142.9

6912

6460

6156.1

6912

6500

6168.1

7380

6550

6183.1

7380

6625

6205.6

7380

6700

6228.1

7380

6725

6253

7380

6750

6250

7380

6775

6255

7560

6800

6260

7560

6825

6285

7560

6850

6300

7560

6875

6330

7560

6900

6360

7606.38

6925

6375

7616.34

6950

6400

7616.34

6975

6400

7616.34

7000

6410

7616.34

7025

6445

7645.68

7050

6450

7645.68

7075

6465

7645.68

7089

6452

7652.76

7652.76

7652.76

7652.76

7652.76

7652.76

_978780273.unknown

_978780269.unknown

_978780270.unknown

_978780268.unknown

_978780262.unknown

_978780266.unknown

_978780260.unknown

_978780239.unknown

_978780253.unknown

_978780255.unknown

_978780252.unknown

_978780233.unknown

_978780234.unknown

_978780231.unknown

