
January 2012

Chapter 19: Software Pricing

19-1

19. SOFTWARE PRICING
Table of Contents

19.1 INTRODUCTION..19-2

19.2 SOFTWARE PRICE ANALYSIS.. 19-2

 19.2.1 Price Analysis Techniques.................................... 19-5

 19.2.2 Price Analysis Tools.. 19-6

19.3 SOFTWARE COST ANALYSIS... 19-8

 19.3.1 Considerations For Software Cost Analysis.......... 19-11

 19.3.2 Cost Analysis of a Parametric Estimate............... 19-14

 19.3.3 COTS Special Pricing Considerations.................. 19-16

19.4 SOFTWARE PRICING SUMMARY.......................................19-16

APPENDIX 19A. SOFTWARE COST ESTIMATION

 TERMINOLOGY...19A-1

APPENDIX 19B. POPULAR PARAMETRIC SOFTWARE

 COST MODELS...19B-1

APPENDIX 19C. COMMERCIAL OFF-THE-SHELF (COTS)

 SOFTWARE... 19C-1

APPENDIX 19D. WORKS CITED..19D-1

January 2012

Chapter 19: Software Pricing

19-2

19.1 INTRODUCTION

Software is a set of programs and accompanying documentation that directs
computers to perform desired functions. In simple terms, a software program
is a set of instructions for a computer.

19.2 SOFTWARE PRICE ANALYSIS

In order to conduct software price analysis, the terms for comparing the data
must be properly defi ned. Referring to the Naval Center for Cost Analysis
(NCCA) Software Development Estimating Handbook, Phase One, dated
February 1998, there are two basic types of information required to develop
a good software price analysis: 1) technical and programmatic
information for the program proposal being analyzed and 2) technical and
programmatic information for the analogous/similar historical programs
used to develop the estimate/IGCE that will be compared to the proposal.

Based on the analysis in NCCA’s Handbook, a software development estimate
requires, at a minimum, the following information for the estimates being
analyzed:

• Some measure of the work to be performed with associated units
(i.e., source line of code (SLOC) counts, words, function points, etc.).

• If SLOC is utilized as the unit of measure, the associated counting
convention (i.e., physical, physical with comments, logical, etc.).

• The condition of the code (i.e., percent new, percent reused
(modifi ed, verbatim, translated, rehosted, Commercial Off the
Shelf (COTS), etc.)), with associated defi nitions.

• The phases of the software development life cycle to be estimated
(e.g., System Design Review (SDR) through Formal Qualifi cation
Test (FQT)).

• The development mode (such as, embedded versus non-
embedded). Embedded Software is defi ned as software that is
inside a physical object and controls its behavior. This is a more or
less specialized term for software inside navigational devices, radar
sets, oscilloscopes, and other instruments. Embedded software has
its own characteristic productivity and quality profi les. (Source:
Capers Jones). This is software that determines the functionality
of microprocessors and other programmable devices that are used
to control electronic, electrical and electro-mechanical equipment
and sub-systems. The programmable devices are often “invisible”
to the user. (Source: The TickIT Guide.)

January 2012

Chapter 19: Software Pricing

19-3

• Especially for historical costs, if known, the name of the contractor
responsible for developing the program. NCCA contends that
contractor-specifi c data holds the greatest possibility for increasing
the accuracy and decreasing the variance associated with software
estimating tools.

In addition to the above items, there are four other areas that can be cost
drivers for software that are input parameters for most software parametric
cost models:

1.) Project Application – MIS, communications, radar, etc.
2.) Specifi cation Level - MIL-STD-2167A, commercial, etc.
3.) Development Model - Waterfall, Spiral, etc.
4.) Project Scope - rehost, development, maintenance, etc.

Since all of the information requested affects the projected productivity of the
development effort, it is crucial that the information gathered be as specifi c as
possible. In addition to the aforementioned information on the program being
estimated, the analyst must compile the same information for the analogous
historical programs that will be used to develop the price analysis comparison.
Furthermore, the actual effort, schedule, and cost (price) to develop the
software, by software development phase if possible, should be obtained.
With this information the most accurate productivity, schedule, and labor
rate metrics can be developed. The Software Development Plan (SDP) typi-
cally requires a list of previously delivered programs developed by the con-
tractor, with the associated technical and programmatic data. If, however,
the SDP is not available, this type of information can and should still be
obtained from the contractor in whatever form is available. When
collecting historical data, the analyst must ensure that the information is for
completed programs because projections of on-going efforts are often mixed
in with the list of the contractor’s programs. Since software development
is continuously evolving, the analyst should always try to obtain the most
recent data available.

It is important to know how the SLOC was counted so that any productivity
or effort estimating relationships developed will be valid. There are two main
categories of code counting conventions: physical and logical. Counting
physical SLOC is accomplished by tallying the number of carriage returns in
the source document. Logical SLOC are counted by tallying logical units (for
example, an IF-THEN-ELSE statement is considered one logical unit).

January 2012

Chapter 19: Software Pricing

19-4

The impact of the code counting convention is emphasized in the NCCA
Handbook, Phase One, which referenced two studies. An Institute for De-
fense Analyses (IDA) study found that on average, physical SLOC produce
a code size that is about 20 percent higher than counting the same code using
a logical SLOC defi nition. NASA’s Software Engineering Laboratory (SEL)
also found wide differences between physical and logical code counts.
They found that a FORTRAN program’s ratio of physical lines to logical
statements ranged from 2.5 to 5 due to variations in the number of
comments. Likewise, Ada programs exhibited a similar ratio of 2.5 to 6
physical lines per logical statement. Not only is knowing the amount of
source code necessary, but knowing the “condition” of the code is also
important. NCCA used the term “condition” to describe the composition
of the source code (i.e., %new, %reused). Sections 19.2.4 (Technology Inser-
tion) and 19.4.3 (Reused Code) contain additional information concerning
reused code. The amount of high-order language (HOL) a program con-
tains is also an important factor to consider. All programming languages,
except Assembly, are defi ned as HOLs. Analysts should ask for the new
and reused SLOC by language so as to avoid having to derive these values.

When using historical software effort data, it is important to consider the
level of requirements under which the software was developed. A major
program may have several software development efforts spanning different
acquisition phases. For example, typical acquisition strategies require
development of prototypes and associated software during a Prototype
Phase. After a competitive selection process, one contractor’s design is chosen
for further development. Final development takes place for the deployable
software by the winning contractor. The contractor probably reused code
from the Prototype Phase that may not have undergone the same level of
documentation, testing, or review as software developed for deployment.
As a result, using historical prototype data points to estimate effort prior to
deployment may not be appropriate without some adjustment.

January 2012

Chapter 19: Software Pricing

19-5

Therefore, it is recommended that the data shown in Table 19-1 be requested
from the offerors (if not already in the SIR) and from the sources of other
data/IGCE to allow a valid comparison.

Table 19-1. Software Estimate Comparison Parameters

If as a minimum the information in Table 19-1 is obtained for the proposed
project and the item(s) to be used as the basis of comparison (IGCE, market
survey, similar items, etc.), then there should be good substantiation for the
comparison.

19.2.1 Price Analysis Techniques
The FAA Procurement Guidance T.3.2.3A.1.c provides the following pricing
techniques to use when performing price analysis:

• Comparison of proposed prices with Independent Government
Cost Estimate.

• Comparison of proposed prices received in response to the
Screening Information Request (SIR).

• Comparison of prior proposed prices and contract prices with
current proposed prices for the same or similar end items and
services in comparable quantities.

• Comparison with competitive published catalogs or lists, published
market prices or commodities, similar indexes, and discount or
rebate arrangements.

January 2012

Chapter 19: Software Pricing

19-6

• Application of Software Cost Estimating Model parameters or
Rules of Thumb (such as person-months per SLOC, or other units;
see section 19.3.) (AMS uses the term “rough yardsticks” for this
technique) to highlight signifi cant inconsistencies that warrant
additional pricing inquiry.

• Ascertaining that the price is set by law or regulation.

19.2.2 Price Analysis Tools
Price analysis tools for software are the same as those cited in Chapter 5.
Some additional guidance applicable, not only to software analysis, but to all
price analysis is provided below.

Comparison with a Similar Item’s Proposal/Price/Cost Estimate
This section is based on a U.S. Air Force Material Command (AFMC) white
paper “Methods for Evaluating Similar Items”, dated January 1996. The abil-
ity to compare a proposal with a similar item for price analysis presumes the
price for that similar item is reasonable and acceptable. The Government
might have purchased the item previously on the basis of adequate price
competition, catalog or market pricing, commercial item pricing, or negotia-
tions using cost or pricing data. If so, documentation that demonstrates price
reasonableness for the item would already be possessed by the Government.
Any of these should generate the confi dence necessary to support the conten-
tion that price analysis will produce a reasonable price. However, it is also
possible that the Government may never have purchased the similar item. In
that situation, it would be necessary to establish the reasonableness of a simi-
lar item’s price before any further price analysis on the offered item could be
conducted. It is imperative to determine a suitable basis, else the price analy-
sis would be without merit.

Once comfortable with the reasonableness of the similar item’s price, an
understanding of the technical similarities and differences between the
offered item and the similar item is necessary. The pertinent characteristics
(e.g., size, language, application type, etc., from Table 19-1) of each item must
be identifi ed to facilitate comparison.

If a direct comparison is not possible, break down the offered and similar
items until a common baseline is reached. It may be as simple as segregating
options and upgrades to the same basic, lower-level unit, along with two
lists of adders that would complete the items. The automobile industry is
the clearest example where this method can be applied. However, the same
thing can be done with software, isolating differences such as functionality to
leave the same basic operating system and application type. Then, proceed
with establishing prices for the baseline unit and each adder.

January 2012

Chapter 19: Software Pricing

19-7

The most complex, and perhaps most frequent, situation to be encountered,
especially for a new development, involves the inability to reach a common,
identifi able baseline unit. In this case compare the characteristics of the two
items and determine some relationship between them. Examples could be
found where similar items might be compared in areas such as size, language,
development phases, and specifi cation level. The price of the similar item,
having been determined reasonable, is used as the baseline, and the differences
between the two items are considered as pluses and minuses to that baseline.

When the procured and similar items are broken down for evaluation, any
suitable price analysis tools and techniques may be used to substantiate
prices of the segregated pieces. Utilize purchase history or catalog, market, or
commercial price assessment as applicable. By closely aligning characteristics
into comparable categories, some parametric relationship might be disclosed
to explain the impact of a characteristic. Of course, if reasonableness of a
portion cannot be established using price analysis techniques, the negotiator
should request cost information on that portion and perform a cost analysis.

The Cost/Price Model
The analyst should plan for the development of a cost/price model. This is not
a Cost Estimation Model as discussed in Appendix 19B, but a spreadsheet type
model used specifi cally for cost/price analysis and/or proposal evaluation.
When preparing a negotiation position, a cost/price model should consist
of spreadsheets for the basic items being negotiated (usually CLINs or WBS
elements), summary sheets, and sheets containing backup data (other direct
costs, rates etc.). Essentially, all of the elements that are to be analyzed should
be represented in the model.

In a competitive procurement it is often useful to provide an automated mod-
el with the SIR for direct input by the contractors. This reduces evaluation
time and minimizes errors. The construction of the model will depend heav-
ily on the type(s) of contract, CLIN structure, WBS structure, and quantity
of data required. The analyst must work closely with the CO and program
offi ce, to assure that mutual goals are met. A technical description and an
in-depth explanation of cost/price models are provided in Chapter 3, “Auto-
mated Cost Models” of this Handbook.

For software procurements, the model can be especially useful since it should
contain the input parameter requirements (Table 19-1 as a minimum) needed
to compare proposals to the IGCE and/or similar items, plus be used as a
source of data to be input into a Software Cost Estimation Model.

January 2012

Chapter 19: Software Pricing

19-8

19.3 SOFTWARE COST ANALYSIS

Cost analysis is the review and evaluation of the separate cost elements and
proposed profi t/fee of:

• An offeror’s or contractor’s cost or pricing data or information
other than cost or pricing data and

• The judgmental factors applied in projecting from the data to the
estimated costs.

The purpose of the evaluation is to form an opinion on the degree to which
the proposed costs represent what the cost of the contract should be,
assuming reasonable economy and effi ciency. However, cost analysis does
not necessarily provide a picture of what the market is willing to pay for the
product involved. For that price analysis is needed.

The cost areas analyzed in a Cost Analysis, each discussed in detail in a
separate chapter of the FAA Pricing Handbook, are as follows:

• Direct Labor
• Material
• Other Direct Costs (ODCs)
• Indirect Costs
• Facilities Capital Cost of Money
• Profi t/Fee

Cost Estimation: Approach and Methods
As excerpted from the 05/30/03 version of the Jet Propulsion Laboratory’s
Handbook for Software Cost Estimation, the following should be included in
a proposed software estimate.

The dominant cost in software development is the cost of labor. A basic cost
equation for software can be defi ned as:

Total_SW_Project$ = SW_Development_Labor$ + Other_Labor$ + Nonlabor$
SW_Development_Labor$ includes:

• Software Systems Engineering - performed by the software architect,
software system engineer, and subsystem engineer for functional
design, software requirements, and interface specifi cation. Labor
for data systems engineering, which is often forgotten, should also
be considered. This includes science product defi nition and data
management,

January 2012

Chapter 19: Software Pricing

19-9

• Software Engineering - performed by the cognizant engineer and
developers to unit design, develop code, unit test, and integrate
software components, and

• Software Test Engineering - covers test engineering activities from
writing test plans and procedures to performing any level of test
above unit testing.

Other_Labor$ includes:

• Software management and support - performed by the project
element manager (PEM), software manager, technical lead, and
system administration to plan and direct the software project and
software confi guration management,

• Test-bed development,

• Development Environment Support,

• Software system-level test support, including development and
simulation software,

• Assembly, Test, & Launch Operations (ATLO) support for fl ight
projects,

• Administration and Support Costs, including Overhead and G&A,

• Software Quality Assurance,

• Independent Verifi cation & Validation (IV&V), and

• Other review or support charges.

Nonlabor$ includes:

• Support and services, such as workstations, test-bed boards &
simulators, ground support equipment, network and phone
charges, etc.,

• Software procurements such as development environment,
compilers, licenses, CM tools, test tools, and development tools,

• Travel and trips related to customer reviews and interfaces, vendor
visits, plus attendance at project-related conferences, and

• Training.

All estimates are made based upon some form of analogy: Historical Analogy,
Expert Judgment, Models, and “Rules-of-Thumb.” The role these methods

January 2012

Chapter 19: Software Pricing

19-10

play in generating an estimate depends upon where one is in the overall life-
cycle.

Typically, estimates are made using a combination of these four methods.
Model-based estimates along with high-level analogies are the principal
source of estimates in early conceptual stages. As a project matures and the
requirements and design are better understood, analogy estimates based
upon more detailed functional decompositions become the primary method
of estimation, with model-based estimates used as a means of estimate
validation or as a “sanity-check.”

1. Historical analogy estimation methods are based upon using the
software size, effort, or cost of a comparable project from the past.
When the term “analogy” is used in this document, it will mean
that the comparison is made using measures or data that has been
recorded from completed software projects. Analogical estimates
can be made at high levels using total software project size and/or
cost for individual Work Breakdown Structure (WBS) categories in
the process of developing the main software cost estimate. High-
level analogies are used for estimate validation or in the very early
stages of the life-cycle. Generally, it is necessary to adjust the size
or cost of the historical project, as there is rarely a perfect analogy.
This is especially true for high-level analogies.

2. Expert judgment estimates are made by the estimator based
upon what he or she remembers it took previous similar projects
to complete or how big they were. This is typically a subjective
estimate based upon what the estimator remembers from previous
projects and gets modifi ed mentally as deemed appropriate. It has
been found that expert judgment can be relatively accurate if the
estimator has signifi cant recent experience in both the software
domain of the planned project, as well as the estimation process
itself [Hihn and Habib-agahi, 1990].

3. Model-based estimates are estimates made using mathematical
relationships or parametric cost models. Parametric cost models
are empirical relationships derived by using statistical techniques
applied to data from previous projects. Software cost models
provide estimates of effort, cost, and schedule.

4. “Rules-of-thumb” come in a variety of forms and can be a way of
expressing estimates as a simple mathematical relationship (e.g.
Effort = Lines_of_Code / 10) or as percentage allocations of effort

January 2012

Chapter 19: Software Pricing

19-11

over activities or phases based upon historical data (e.g. I&T is 22%
of Total Effort).

Whatever method is used, it is most important that the assumptions and
formulas are documented to enable more thorough review and to make it
easier to revise estimates at future dates when assumptions may need to be
revised. All four methods are used during the software life-cycle. The level
of granularity varies depending on what information is available. At lower-
levels of the WBS, expert judgment is the primary method used, while model-
based estimates are more common at higher levels of the WBS.

19.3.1 Considerations for Software Cost Analysis
In addition to general cost analysis considerations, there are three key
considerations that apply to most proposals for a software program. These
are the software development productivity, code condition (percent new and
reused code) and the software defect rate by program phase.

Productivity

Productivity is a primary indicator of how effi cient the contractor is in
developing software. Productivity relates software development effort
to the organizational capabilities, experience, and individual talents of
the team that will perform the software development. This rate should be
based upon historical data. The productivity rate tends to remain constant
for a given organization, so previous proposals by the same contractor are
especially valuable. It is much more diffi cult to compare rates between
different contractors because it is so dependent upon organization and
personnel. Productivity is also affected by programming language, processes,
specifi cation level and software tools.

Referring to NCCA’s Handbook, two calculations should be made for
software development productivity:

1. Productivity expressed as hours per SLOC based on the following
formula:

2. Productivity expressed as hours per new SLOC. This metric is
 important because new SLOC tends to drive the effort.

PM = person-months of effort, 152 is assumed to be the average work-hours in a month.

January 2012

Chapter 19: Software Pricing

19-12

This rate along with the code size usually forms the basis for the software
development effort. Therefore, it is important to compare productivity
against a Rule of Thumb estimate, other programs and/or the contractors past
performance to determine if it reasonable. Then, over the life of the contract,
compare the rate from proposal to proposal. The rate does tend to increase
(become less effi cient) gradually over the life of the contract as additional
requirements are made to the program (new code has to be integrated with
more and more old code).

Code Condition
Code condition is important to cost analysis. The proposal should separate
the total software development effort by percent of new code, modifi ed code,
COTS and unmodifi ed code.

Reused code (modifi ed, unmodifi ed and COTS fall into this category) is
included in a program to reduce effort, cost and time (schedule). According
to NASA’s Software Engineering Lab (SEL), “Cost and Schedule Estimation
Study Report”, dated Nov 1993, for projects with moderate to low code reuse
(less than 70 percent), the post-CDR growth in SLOC due to requirement
changes and items to be determined (TBDs) is commensurate with past SEL
experience: 40 percent. For projects with high code reuse (70 percent or
more), the post-CDR growth in SLOC is only about half as much (20 percent).
For projects with moderate to low code reuse, the post-critical design review
(post-CDR) growth in schedule is 35 percent. For projects with high reuse,
the post-CDR growth in schedule is 5 percent.

Once the percentage of modifi cations in a block of code exceed 20%, it is
usually less expensive to write new code. Often contractors are optimistic in
the amount of code that can be reused. Based on metrics of software program
growth (increasing cost and schedule), there are typically two sources of
new code increase, requirements growth from the user and less modifi ed/
unmodifi ed code than projected by the contractor. As the contractor gets into
the process of actually developing the software, the task of reusing software
can become more diffi cult than planned. Therefore it is important to keep
track of these percentages over the life of a contract as both indicators of
future problems and for cost analysis.

January 2012

Chapter 19: Software Pricing

19-13

Figure 19-1 below is an example of new code growth at the expense of reused
code taken from an actual FAA program. Although total SLOC grew only
5% during the 17 month period shown, the amount of new code that had to
be developed grew from 59% of the total code to 89%. There was also about
25% schedule growth on this program.

 Figure 19-1. Comparison of New Code versus Reused Code

Software Defects
The contractor should indicate in the proposal the number of defects expected
to be discovered and fi xed for each phase of the program. The earlier in
the development cycle that a software bug is discovered/detected, the
less expensive it will be to fi x. The quantity of software defects should be
expressed in or converted to a rate. A common defect rate formula follows
(assuming lines of code are counted).

There should be separate rates calculated by phase using the SW Defect Rate
equation for new code and modifi ed code, plus a rate for defects remaining
in the existing, unmodifi ed code. These calculations would then become
the basis for the effort required for testing/engineering to fi nd and to fi x
the defects in each phase. Defect metrics can be useful during software
cost analysis to aid the analyst in determining if the contractor’s estimated
effort for identifying and fi xing defects is consistent with the contractor’s/
industry’s historical averages.

SLOC
DefectsRate Defect SW

January 2012

Chapter 19: Software Pricing

19-14

Figure 19-2 shows a typical trend for detecting software defects based on
studies of completed software programs by Musa, Iannino and Okumoto in
their book Software Reliablity-Measurement, Prediction, Application. The defects
discovered during coding and unit test are usually not formally reported/
tracked by the contractor so expect that only the estimates for the phases
after Unit Test will be provided in a proposal. Musa et. al., per their study,
organized the data to predict the number of defects remaining in the software
per KSLOC at the start of each phase. Each defect quantity includes the
defects for the remaining phases (6.01 is included in the 19.70). The book
indicated that program size (SLOC) was the most important defect prediction
factor, with specifi cation change activity, programmer skill level and design
documentation thoroughness being the other most signifi cant predictive
factors. Defects continue to exist in the software even after site installations
are completed that are gradually discovered as changes in software use or
hardware occur.

 Figure 19-2. Mean Software Defect Rate by Phase

19.3.2 Cost Analysis of a Parametric Estimate
Since most software cost estimates and proposal estimates today are based
at least in part on parametric models, this section summarizes some points
to consider when analyzing a parametric estimate. This section is extended
from NASA’s Parametric Cost Estimating Handbook, dated fall 1995.

With the proliferation of parametric cost estimating models and tools, both
commercial models and “home grown” versions, it is impossible to describe
what to look for in every model and cost parameter. However, some
generalizations can be made. An analyst confronted with a parametric cost
estimate should take a few steps to ensure a fair review. These are:

January 2012

Chapter 19: Software Pricing

19-15

• Understand the cost model used. Appendix 19B and 19C can be of
assistance.

• Review the program inputs to the model. Is the schedule correct?
Does the WBS adequately describe the product being estimated? Is
anything missing? Are there duplications? Does the WBS follow
the statement of work?

• Review the technical inputs to the model with government
engineers or program offi ce. Check them for reasonableness and
benchmark them using the experience of the resident experts.

• Understand the model’s cost drivers. Generally, there are a few
select parameters that are the predominant cost estimating factors
that drive cost. Many of the others are just “tweaks” to the model.
Concentrate on the cost drivers when performing the analysis.

• Be aware of the assumptions the cost estimator made when the
model was built. Are they still reasonable for this procurement?

• Be knowledgeable of the historical cost basis for the model, if any.
Be sure to review the source documentation. Be wary of any model
used that has no basis in historical cost. How was the data “tuned”
or normalized? Were data outliers disregarded? If so, why? Was
the model calibrated? How was the calibration performed? Were
any universal or “standard” cost factors used? Would they be
applicable in this case?

• Question how the future environment might be different from the
historical case. Have these differences been accounted for?

• Review the track record of the estimator or the estimating
organization. What is their past performance? Have their estimates
been reliable?

• Understand the labor factors involved with the model. What are
the effective costing rates used? Are they reasonable? Do they
refl ect the organization and skill levels being estimated? Are the
skill levels appropriate for the type of work being performed?

• Identify what cost factors have been “tweaked” and why. Focus on
the “big ticket” items. Using expert opinion and “rules of thumb,”
are any signifi cant cost factors outside the range of reasonableness?
For instance, it is very easy to calibrate a software cost model’s cost
(hours or dollars) per line of software code. Is the cost estimating
relationship (CER) reasonable for the estimate? Since models

January 2012

Chapter 19: Software Pricing

19-16

may defi ne a software line of code differently, it is important to
understand the defi nitions used in the model being evaluated.

19.3.3 COTS Special Pricing Considerations
See Appendix 19C for a detailed discussion of the areas that are special and
should be considered in pricing a proposal that is for or includes COTS items.

19.4 SOFTWARE PRICING SUMMARY

Pricing is used by procuring offi cials to establish a “fair and reasonable
price”. Price analysis and cost analysis are the two basic techniques used
to accomplish this purpose. Price analysis should always be performed.
Under certain circumstances, cost analysis also needs to be performed.
Price analysis plays the lead role in determining price reasonableness and
fairness, and it becomes the responsibility of the analyst to research and
gather pricing data from sources other than the contractor. As a result, the
analyst must understand the fundamentals of performing price analysis
along with the peculiar aspects associated with software cost estimation.
In addition to the general cost analysis considerations, there are three key
considerations that apply to most proposals for a software program: software
development productivity, code condition (percent new, reused code) and
the software defect rate by program phase. The software estimation and
analysis techniques/methods contained in this chapter should provide the
analyst with the background required to understand a software program cost
estimate and, therefore, aid in analysis of the proposed estimate.

Software estimating models (COCOMO, COCOMO II, SEER-SEM, etc.) vary
in the parametric factors they employ. To best understand and test the details
of a software estimate, the analyst will need to understand the specifi c
assumptions and inputs required by the model used by the contractor.
Specifi c information on COCOMO II may be found in the 5/03 Handbook for
Software Cost Estimation published by the Jet Propulsion Laboratory.

19A-1

January 2012

Appendix 19A: Software Pricing

Software Cost Estimation Terminology

Actual Cost of Work Performed (ACWP): The actual direct costs incurred on
a project at any given time.

Algorithmic Models (also known as parametric models): produce a cost
estimate using one or more mathematical algorithms using a number of
variables considered to be the major cost drivers. These models estimate
effort or cost based primarily on the hardware/software size, and other
productivity factors known as cost driver attributes.

Analogy: A method of estimating developed on the basis of similarities
between two or more programs, systems, items etc.

Analogy (or Comparative) Models: Models that use a method of estimating
that compares a proposed project with one or more similar and completed
projects where costs and schedules are known. Then, extrapolating from
the actual costs of completed projects, the model(s) estimates the cost of a
proposed project.

Annual Change Traffi c (ACT): The fraction of a software product’s source
instructions which undergoes change during a year, either through addition
or modifi cation. The ACT is the quantity used to determine the product size
for software maintenance effort estimation.

Baseline: An established, fi xed version of the project plan against which
actual implementation of the project is measured.

Bottoms-Up (Engineering Estimate or Grass Roots) Models: A method of
estimation that estimates each component of the project separately, and the
results are combined (“rolled up”) to produce an estimate of the entire project.

Budgeted Cost of Work Performed (BCWP) (Earned Value): The total value
of work performed at any given time.

Budgeted Cost of Work Scheduled (BCWS) (Budgeted Cost To-Date): The
total budgeted cost for work scheduled to be completed at any given time.

Calibration: A technique used to allow application of a general cost model to
a specifi c set of data. This is accomplished by calculating adjustment factor(s)
to compensate for differences between the referenced historical costs and the
costs predicted by the cost model using default values.

Computer-Aided Software Engineering (CASE): Identifi es a sector of the
computer software industry concerned with producing software development
environments and tools. The main components of a CASE product are

19A-2

January 2012

Appendix 19A: Software Pricing

individual tools that aid the software developer or project manager during
one or more phases of software development (or maintenance). Other features
are a common user interface; interoperability of tools; and a repository or
encyclopedia to provide a common tool base and central project database.
CASE may also provide for code generation.

Computer Software Component (CSC): Since CSCIs may contain over
100,000 lines of code, they are further partitioned into computer software
components (CSCs) and computer software units (CSUs).

Computer Software Confi guration Item (CSCI): An aggregation of computer
software that satisfi es an end-use function and is designated for confi guration
management. A CSCI may be broken down into CSCs and/or CSUs.

Computer Software Unit (CSU): The lowest level in a breakdown of a
software product.

COnstructive COst MOdel (COCOMO): A software cost estimation model
developed by Barry Boehm and is described in his book, Software Engineering
Economics.

Cost Analysis: The review and evaluation of the separate cost elements and
proposed profi t of (a) an offeror’s or contractor’s cost or pricing data and (b)
the judgmental factors applied in projecting from the data to the estimated
costs in order to form an opinion on the degree to which the proposed costs
represent what the cost of the contract should be, assuming reasonable
economy and effi ciency.

Cost Driver Attributes: Productivity factors in the software product
development process that include software product attributes, computer
attributes, personnel attributes, and project attributes.

Cost Drivers: The controllable system design or planning characteristics
that have a predominant effect on the system’s costs. Those few items, using
Pareto’s law, that have the most signifi cant cost impact.

Cost Estimating Relationship: An algorithm relating the cost of an element
to physical or functional characteristics of that cost element or a separate cost
element; or relating the cost of one cost element to the cost of another element.

Cost Estimating Relationships (CER): A mathematical expression that
describes, for predicative purposes, the cost of an item or activity as a function
of one or more independent variables.

Cost Model: An estimating tool consisting of one or more cost estimating
relationships, estimating methodologies, or estimating techniques used to
predict the cost of a system or one of its lower level elements.

19A-3

January 2012

Appendix 19A: Software Pricing

Cost or Pricing Data: All facts that, at the time of the price agreement, the
seller and buyer would reasonably expect to affect price negotiations. Cost
or pricing data requires certifi cation. Cost or pricing data are factual, not
judgmental data, and are therefore verifi able. While these data do not indicate
the accuracy of the prospective contractor’s judgment about estimated future
costs or projections, they do include the data utilized to form the basis for
that judgment. Cost or pricing data are more than historical accounting data;
they are all the facts that can be reasonably expected to contribute to the
soundness of estimates of future costs and to the validity of determinations
of costs already incurred.

Cost/Schedule Control System Criteria (C/SCSC): A set of criteria specifi ed
by the Federal Government for reporting project schedule and fi nancial
information since 1960. However, the American National Standards Institute/
Electronic Industry Association as a new standard, called ANSI/EIA 748 or
Earned Value Management Systems (EVMS).

Delivered Source Instructions (DSI): The number of source lines of code
developed by the project. The number of DSIs is the primary input to many
software cost estimating tools. The term delivered is generally meant to
exclude non-delivered support software such as test drivers. The term source
instructions includes all program instructions created by project personnel
and processed into machine code by some combination of preprocessors,
compilers, and assemblers. It excludes comments and unmodifi ed utility
software. It includes job control language, format statements, and data
declarations.

Delphi Technique: A group forecasting technique, generally used for future
events such as technological developments, that uses estimates from experts
and feedback summaries of these estimates for additional estimates by these
experts until a reasonable consensus occurs. It has been used in various
software cost-estimating activities, including estimation of factors infl uencing
software costs.

Detail Estimating: Grass Roots, Bottoms-Up: The logical buildup of
estimated hours and material by use of blue-prints, production planning
tickets, or other data whereby each operation is assigned a time value.

Domain: A specifi c phase or area of the software life cycle in which a developer
works. Domains defi ne developers and users areas of responsibility and the
scope of possible relationships between products. The work can be organized
by domains such as Software Engineering Environments, Documentation,
Project Management etc.

19A-4

January 2012

Appendix 19A: Software Pricing

Evolutionary Acquisition (EA) Model: The EA Model is pretty similar
in content to the Waterfall Model except it encourages prototyping. The
underlying factor in EA is to fi eld a well-defi ned core capability quickly in
response to a validated requirement, while using a phased upgrade program
to eventually enhance the system to provide the full system capability. This
process is also referred to as evolutionary prototyping.

Expert Judgment Models: Use a method of software estimation that is based
on consultation with one or more experts that have experience with similar
projects. An expert-consensus mechanism such as the Delphi technique may
be used to produce the estimate.

Fair Price (See Also Reasonable Price): From the perspective of a buyer, a
fair price is a price that is in line with (or below) the fair market value of the
contract deliverable (to the extent that fair market value can be approximated
through price analysis). “Fair market value” is the price you should expect to
pay, given the prices of bona fi de sales between informed buyers and informed
sellers under like market conditions in competitive markets for deliverables of
like type, quality, and quantity. When data on probable performance costs are
available, a separate test of “fairness” is whether the proposed price is in line
with (or below) the total allowable cost of providing the contract deliverable.
This cost would be the cost incurred by a well managed, responsible fi rm
using reasonably effi cient and economical methods of performance, plus a
reasonable profi t. From the perspective of a seller, a fair price is a price that
is realistic in terms of the seller’s ability to satisfy the terms and conditions of
the contract.

Fourth Generation Language (4GL): Fourth generation languages are
programming languages closer to human languages than typical high level
programming languages. Most 4GLs are used to access databases. For
example a typical 4GL command is “FIND ALL RECORDS WHERE NAME
IS “SMITH”.”

Function Points: Function Points are those pieces of code that perform some
specifi c activity related to inputs, inquiries, outputs, master fi les, and external
system interfaces.

Historical Data: A term used to describe a set of data refl ecting actual cost or
past experience of a product or process.

Incremental Development: The incremental development approach is a top
down implementation of distinct functional elements of the product. The
development of each increment is accomplished as a separate waterfall type
of development. The incremental development methodology differs from

19A-5

January 2012

Appendix 19A: Software Pricing

the evolutionary approach in that under the incremental strategy the end
product is well-defi ned.

Knowledge Base: The repository of knowledge in a computer system or
organization. The collection of data, rules, and processes that are used to
control a system, especially one using artifi cial intelligence or expert system
methods.

Life Cycle: The stages and process through which hardware or software
passes during its development and operational use. The useful life of a
system. Its length depends on the nature and volatility of the business, as
well as the software development tools used to generate the databases and
applications.

Management Information Systems: A computer-based system of processing
and organizing information that provides different levels of management
within an organization with accurate and timely information needed for
supervising activities, tracking progress, making decisions, and isolating and
solving problems.

Metric: Quantitative analysis values calculated according to a precise
defi nition and used to establish comparative aspects of development progress,
quality assessment or choice of options.

New Line of Code: A source line of code that will be developed completely,
i.e., designed, coded and tested.

Paradigm: A model, example, or pattern. A generally accepted way of
thinking.

Parametric Cost Model: A mathematical representation of parametric cost
estimating relationships that provides a logical and predictable correlation
between the physical or functional characteristics of a system, and the
resultant cost of the system. A parametric cost model is an estimating system
comprising cost estimating relationships (CERs) and other parametric
estimating functions, e.g., cost quantity relationships, infl ation factors, staff
skills, schedules etc. Parametric cost models yield product or service costs at
designated levels and may provide departmentalized breakdown of generic
cost elements. A parametric cost model provides a logical and repeatable
relationship between input variables and resultant costs.

Platform: Hardware or software architecture of a particular model or family
of computers. The term sometimes refers to the hardware and its operating
system.

19A-6

January 2012

Appendix 19A: Software Pricing

Price Analysis: The process of examining and evaluating a proposed price
without evaluating its separate cost elements and proposed profi t.

Procedures: Manual procedures are human tasks. Machine procedures are
lists of routines or programs to be executed, such as described by the Job
Control Language (JCL) in a mini or mainframe, or the batch processing
language in a personal computer.

Process: The sequence of activities (in software development) described in
terms of the user roles, user tasks, rules, events, work products, resource
use, and the relationships between them. It may include the specifi c design
methodology, language, documentation standards etc.

Rapid Prototyping: The creation of a working model of a software module to
demonstrate the feasibility of the function. The prototype is later refi ned for
inclusion in a fi nal product.

Rayleigh Distribution: A curve that yields a good approximation to the
actual labor curves on software projects.

Real-Time: 1) Immediate response. The term may refer to fast transaction
processing systems in business; however, it is normally used to refer to
process control applications. For example, in avionics and space fl ight,
real-time computers must respond instantly to signals sent to them. 2) Any
electronic operation that is performed in the same time frame as its real-world
counterpart. For example, it takes a fast computer to simulate complex, solid
models moving on screen at the same rate they move in the real world. Real-
time video transmission produces a live broadcast.

Reasonable Price (See Also Fair Price): A price that a prudent and competent
buyer would be willing to pay for the contract deliverable, given adequate
data on (1) market conditions, (2) alternatives for meeting the requirement,
(3) the evaluated price of each alternative, and (4) non-price evaluation factors
(in “best value” competitions).

Re-engineering: Process of restructuring and redesigning an operational
(or coded) hardware or software system or process in order to make it meet
certain style, structure, or performance standards.

Reusability: Ability to use all or the greater part of the same programming
code or system design in another application.

Reuse: Software development technique that allows the design and
construction of reusable modules, objects, or units, that are stored in a library
or database for future use in new applications. Reuse can be applied to any

19A-7

January 2012

Appendix 19A: Software Pricing

methodology in the construction phase, but is most effective when object
oriented design methodologies are used.

Security: The protection from accidental or malicious access, use, modifi cation,
destruction, or disclosure. There are two aspects to security, confi dentiality
and integrity.

Software Development Life Cycle: The stages and process through which
software passes during its development. This includes requirements
defi nition, analysis, design, coding, testing, and maintenance.

Software Development Life Cycle Methodology: Application of methods,
rules, and postulates to the software development process to establish
completeness criteria, assure an effi cient process, and develop a high quality
product.

Software Engineering Institute (SEI): SEI is a federally funded research
and development center established in 1984 by the DoD with a broad charter
to address the transition of software engineering technology. The SEI is an
integral component of Carnegie Mellon University and is sponsored by the
Offi ce of the Under Secretary of Defense for Acquisition and Technology. SEI
developed the Software Acquisition Capability Maturity Model (CMM) and
the Checklist and Criteria for Evaluating the Cost and Schedule Estimating
Capabilities of Software Organizations.

Software Method (or Software Methodology): Focuses on how to navigate
through each phase of the software process model (determining data, control,
or uses hierarchies; partitioning functions; and allocating requirements) and
how to represent phase products (structure charts; stimulus-response threads;
and state transition diagrams).

Software Tool: Program that aids in the development of other software
programs. It may assist the programmer in the design, code, compile, link,
edit, or debug phases.

Source Lines of Code (SLOC): All executable source code statements
including deliverable Job Control Language (JCL) Statements, Data
declarations, Data Typing statements, Equivalence statements, and Input/
Output format statements. SLOC does not include any statement that upon
its removal, the program will still compile, e.g., comments, blank lines, and
non-delivered programmer debug statements.

Space Systems Cost Analysis Group: The SSCAG is an organization co-
chaired by the cost directorates of the Air Force Space and Missile Systems
Center (SMC) and NASA at Johnson Space Center. The Software Subgroup

19A-8

January 2012

Appendix 19A: Software Pricing

of the SSCAG, under a multi-year task, developed the Software Methodology
Handbook and a software database of over 2600 records used to calibrate
fi ve software estimating models (PRICE-S, SEER-SEM, SLIM, SASET AND
REVIC).

Spiral Development: The spiral model encompasses features of the phased
life cycle as well as the prototype life cycle. However, unlike those life cycles,
the spiral model uses risk analysis as one of its elements. It also uses the
waterfall model for each step so as to avoid any risks.

Top-Down Models: Use a method of estimation that estimates the overall
cost and effort of the proposed project derived from global properties of
the project. The total cost and schedule is partitioned into components for
planning purposes.

Update: To update an estimate or CER means to utilize the most recent data
to make it current, accurate and complete.

Validation: In terms of a cost model, a process used to determine whether
the model selected for a particular estimate is a reliable predictor of costs for
the type of system being estimated.

Waterfall Model: An eight-phase process used in developing software for
most Department of Defense (DoD) weapon systems, as described in DoD-
Standard 2167A. This process, when done sequentially, is based on the
waterfall model of software development, as described by Barry Boehm.
Each phase requires the delivery of particular documentation products.

Work Breakdown Structure: A work breakdown structure is a product-
oriented family tree, composed of hardware, software, services, data
and facilities which results from system engineering efforts during the
development and production of a defense material item, and which completely
defi nes the program. A work breakdown structure displays and defi nes the
product(s) to be developed or produced and relates the elements of work to
be accomplished to each other and to the end product. MIL-HDBK 881 is the
modern guide for developing a WBS. (See Appendix 19C contains a sample
WBS.)

Workstation: High-performance, single user microcomputer or minicomputer
that has been specialized for graphics, CAD, CAE, or scientifi c application.

19B-1

January 2012

Appendix 19B: Software Pricing

Popular Parametric Software Cost Models

19B.1 INTRODUCTION
There are several sophisticated parametric software cost models that consider
multiple parameters in computing cost or effort required. A list of some
common models is provided below, listed in alphabetical order. Subsequent
sections are a basic discussion of each model. For each of the models, general
information, principal inputs, processing, principal outputs, calibration,
and life cycle (or support) considerations will be discussed. When more
detailed information is needed, cost estimators are encouraged to consult the
referenced documents.

• Automated Cost Estimating Integrated Tools (ACEIT)

• COnstructive COst MOdel (COCOMO.II)

• Cost Xpert

• ForeSight

• KnowledgePLAN Model

• PRICE-S Model

• Revised Enhanced Version of Intermediate COCOMO (REVIC)

• SoftCost-Object-Oriented (OO) Model

• Software Architecture, Sizing, and Estimating Tool (SASET)

• Software ESTimator (SoftEST)

• Software Life Cycle Model (SLIM)

• System Evaluation and Estimation of Resources Software
Estimating Model (SEER-SEM)

19B.2 AUTOMATED COST ESTIMATING INTEGRATED TOOLS
(ACEIT)
ACEIT is an estimating system consisting of a suite of tools designed to assist
cost analysts in arriving at cost estimates, conducting “what-if?” studies,
developing cost proposals and evaluations, conducting risk and uncertainty
analysis, and developing Cost Estimating Relationships (CERs). Its primary
purpose is Financial Management. ACEIT is a Joint Service system, sponsored
by the Air Force Materiel Command (AFMC) Electronic Systems Center and
the US Army Cost and Economic Analysis Center (CEAC). The result of
government-sponsored efforts, the ACEIT suite of applications is available to

19B-2

January 2012

Appendix 19B: Software Pricing

U.S. Government organizations with no charge for use (but there is an annual
maintenance & support fee). It is used by Acquisition Program Offi ces and
at various other levels across the Armed Services, throughout DoD, and by
other Government agencies.

The ACEIT system is comprised of fi ve analysis/estimating tools:

• Automated Cost Estimator (ACE), (the spreadsheet)

• Automated Cost Database (ACDB), (library of commercial and
non-commercial cost models)

• Cost Analysis Statistics Package (CO$TAT), (full-feature statistics
package)

• Cost Risk Assessment (RI$K), (model which quantifi es risk
associated with a cost estimate)

• ACE Executive.

ACE is the heart of ACEIT. It automates all of the steps of the estimating
process, including, building a Work Breakdown Structure (WBS), specifying
estimating methods, performing learning, time phasing and infl ation,
and documentation. ACE also provides access to on-line databases and a
knowledge base of over 1000 cost estimating relationships, models, and
source documents from which users can identify appropriate estimating
methods and incorporate them into their estimate.

The ACEIT system is comprised of fi ve analysis/estimating tools: Automated Cost
Estimator (ACE), (the spreadsheet); Automated Cost Database (ACDB), (relational data
base); Cost Analysis Statistics Package (CO$TAT), (full-feature statistics package);
Cost Risk Assessment (RI$K), (quantifi es risk associated with a cost estimate) and
ACE Executive. ACE, the Automated Cost Estimator, is a special purpose program,
specifi cally developed for cost analysis. It has been organized and structured to follow
the steps or phases used in developing a cost estimate, ranging from defi ning what
is being estimated through time-phasing and fi nal documentation. ACDB is the cost
database module that contains cost, schedule, technical, and programmatic data on
system acquisition contracts. It is a PC-based program designed to assist the user in
building, loading, maintaining, and querying a relational data base of cost and technical
data, and in analyzing data subsets retrieved from it. The ACEIT Executive is a three-part
application: the ACE Calculation Server, the RI$K Calculation Server, and the Microsoft
Excel Client. The Server applications let you run ACE and RI$K sessions from any
client application. Using the Excel client, you can link applications that would naturally
interface with Excel to ACE and RI$K. The user can either enter own CERs/equations
or import the results of other models such as PRICE and SEER. Outputs look like
spreadsheets or can link to Excel.

19B-3

January 2012

Appendix 19B: Software Pricing

ACDB is an automated cost database with the capability to enter, search, and
retrieve cost, schedule, technical, and programmatic data and to automatically
load retrieved data into the Cost Analysis Statistics Package (CO$TAT).
CO$TAT is a cost analysis statistical package built specifi cally for the cost
estimator to perform statistical analyses commonly used in cost estimation.
RI$K is a cost risk application that performs risk and uncertainty analysis.
ACE Executive allows estimates and models hosted in ACE to act as cost
model servers to other applications.

19B2.1 ACEIT Inputs
ACEs provides a workscreen or spreadsheet to perform each step required to
make an estimate. The complete list of steps is as follows:

1. Defi ne the WBS/CES
2. Enter the estimating methodologies
3. Adjust G&A, fee, overhead, escalation, units
4. Apply learning curves
5. Time phase the estimate
6. Estimate/perform what-ifs
7. Document the estimate
8. Review and Refi ne

The input screens resemble spreadsheets and require the equations and
variables to be defi ned. Within each workscreen, functionality is provided in
ACE by giving each column a dedicated purpose. For example, the Learning
Curve Slope column only lets you enter a learning curve slope or a variable
name that represents the slope. Each column has its own syntax. By making
entries in several columns for a row, you can specify that rows estimating
methodology. Typically, the rows in ACE represent WBS/CES line items or
input variable items.

ACE can import from PRICE Software Models, SEER Cost Models, MS Excel
and MS Word.

19B2.2 ACEIT Processing
Since the user enters the equations and variables, the user basically defi nes
the processing. The ACE structure allows the user to progressively move
from one workscreen to another. The user creates the model structure of the
estimate, and calculates the result. This model building can be free-form.
The user does not need to move through the workscreens in a pre-defi ned
order. Unique IDs or variable names can be specifi ed for each row and then

19B-4

January 2012

Appendix 19B: Software Pricing

used in the ACE columns of other rows. This lets rows of the model link
together into a system of equations.

19B2.3 ACEIT Outputs
Reports are basically spreadsheets containing the results. Tools that ACE can
export data to include MS Excel and MS Word.

19B2.4 ACEIT Calibration
Since the user controls the equations, calibration is accomplished by creating
historical databases, experience and refi ning the equations.

19B2.5 ACEIT Life Cycle Considerations
Include the WBS Lifecycle elements into the model.

19B.3 CONSTRUCTIVE COST MODEL (COCOMO.II)
COCOMO.II is a screen-oriented, interactive-software package that assists
in budgetary planning and schedule estimation of a software development
project prior to any work beginning. Through the fl exibility of COCOMO.
II, a software project manager can develop a model (or multiple models)
of projects in order to identify potential problems in resources, personnel,
budgets, and schedules both before and after the potential software package
has been completed.

The COCOMO.II software package is based upon a recently revised version
of the original COnstructive COst MOdel (COCOMO) fi rst published by
Barry Boehm in his book Software Engineering Economics, Prentice-Hall (1981),
and the Ada COCOMO (1987) predecessors.

The primary objectives of the COCOMO.II.1997 effort were to:

• To develop a software cost and schedule estimation model attuned
to the life cycle practices of the 1990’s and 2000’s.

• To develop software cost database and tool support capabilities for
continuous model improvement.

• To provide a quantitative analytic framework, and set of tools
and techniques for evaluating the effects of software technology
improvements on software life cycle costs and schedules.

The full COCOMO.II model includes three stages. Stage 1 supports estimation
of prototyping or applications composition efforts. Stage 2 supports estimation
in the Early Design stage of a project, when less is known about the project’s
cost drivers. Stage 3 supports estimation in the Post-Architecture stage of a
project. The current version of COCOMO.II implements Stage 3 formulas

19B-5

January 2012

Appendix 19B: Software Pricing

to estimate the effort, schedule, and cost required to develop a software
product. It also provides the breakdown of effort and schedule into software
life cycle phases and activities from the original COCOMO manual. These
are still reasonably valid for waterfall model software projects, but need to be
interpreted for non-waterfall projects.

Equation 19B-1 below is the equation used by COCOMO.II to calculate the
estimated effort.

Equation 19B-1. Effort Estimation Equation

ATPROD
ASLOC

Size
100

BRAK1AEMPM 100
ATSF01.001.117

1i
i

5

1j
j

Where:

100
IM3.0CM3.0DM4.0SUAA

100
AT100KASLOCKNSLOCSize

5

1j

SF01.001.1B

19B-6

January 2012

Appendix 19B: Software Pricing

19B.3.1 COCOMO.II Inputs
The primary COCOMO.II input are the program size, in KDSI, Function
Points or Object Points. However, ratings for sixteen additional attributes
must be assessed. These attributes are included in four categories as follows:

• Product attributes: These attributes describe the environment in
which the program operates. The attributes in this category are:
reliability requirements, database size, documentation matched to
life cycle needs, required reusability and program complexity.

• Platform attributes: These attributes refer to the limitations placed
upon the development effort by the hardware and operating system
being used to run the project. The attributes in this category are
execution time constraints, main storage constraints, and platform
volatility.

• Personnel attributes: These attributes describe the skill levels of
personnel assigned to the program. The attributes in this category
include: analyst capability, applications experience, programmer
capability, programming language experience, platform experience
and personnel continuity.

• Project attributes: These attributes refer to the constraints and
conditions under which project development takes place. The
attributes in this category are use of software development tools
and multi-site development.

These 16 factors (or effort multipliers (EM)) are incorporated into the
schedule and effort estimation formulas by multiplying them together. The
numerical value of the ith adjustment factor is called EMi and their product is
called the adjustment factor or EAF. The actual effort, PMtotal, is the product
of the nominal effort times the EAF.

19B.3.2 COCOMO.II Processing
Using COCOMO.II, a nominal assessment of man-months based on size
alone is assessed for the program being considered. Next, the ratings for all

Product Description:
COCOMO.II model is an updated version of the 1981 COCOMO and 1987 Ada COCOMO
models tailored to the new software development life cycle processes and capabilities.
Major new modeling capabilities of COCOMO.II include: a tailorable family of software
sizing models, involving Object Points, Function Points, and Source Lines of Code (SLOC);
non-linear models for software reuse and reengineering; an exponent-driver approach
for modeling relative software diseconomies of scale; and several changes to previous
COCOMO effort-multiplier cost drivers.

19B-7

January 2012

Appendix 19B: Software Pricing

attributes are multiplied to compute the required man-months of effort for
the project. The primary challenges in using COCOMO.II are determining
size and assigning proper ratings to the sixteen attributes.

19B.3.3 COCOMO.II Outputs
The output of the COCOMO.II model is simply the level of effort in man-
months for the project being estimated and a schedule in months. The effort
output can easily be converted to a monetary value if the cost per man-month
is known. The Phase Distribution is one of the outputs. Its function is to
display a breakdown of the software effort and schedule into the phases
of the development cycle. These phases are plans & requirements, design,
programming and integration & test. The outputs of the model are very basic
and not very fl exible, so performance metrics will need to be created outside
of this model.

19B.3.4 COCOMO.II Calibration
Calibration is essential to the proper use of software cost models. The user of
the COCOMO.II may calibrate EAFs and the effort/schedule equations of the
current project. (Detailed procedures for COCOMO calibration are discussed
in the COCOMO Reference Manual.)

19B.3.5 COCOMO.II Life Cycle Considerations
There are no life cycle considerations included in the COCOMO.II model.
The COCOMO Maintenance model (COCOMO-M), described in Chapter
30 of Boehm’s book, can be used to estimate annual man-months required
to support a software program. No mention of COCOMO-M is contained
in the COCOMO.II literature. For the intermediate level COCOMO-M, all
inputs from COCOMO 1.0 are used, except that different numerical values
are assigned to two attributes: reliability and use of modern design practices.
The annual support costs can be computed by multiplying the number of
man-months by the average cost of a man-month.

19B.4 COST XPERT
Marotz, Inc. developed a new model called Cost Xpert. The model is designed
to provide software project cost estimates, to determine optimal delivery
time, to break the project down into tasks by allocating time/effort and to
perform quantitative risk/sensitivity analysis. It supports projects using
object- oriented development, GUI development and formalized software
reuse.

19B.4.1 Cost Xpert Inputs
The most important input parameter is size, which can be input as SLOC
or function points, GUI Metrics, top down and bottoms up methodologies.

19B-8

January 2012

Appendix 19B: Software Pricing

All size inputs are converted to equivalent SLOC. When more than one
size estimating methodology is used, the user can select which results to be
averaged together to create the cost and schedule estimate. Cost Xpert has
about thirty inputs which are included in the three other “notebooks tabs”. A
help screen for each input assists the user in selecting proper values. Each of
the tabs is now summarized.

• Project Tab: Inputs in this tab include primary and secondary
programming language; project coeffi cients (commercial, military,
embedded etc.); project standards (commercial, DoD-STD-2167A
etc.) identifi es documentation required; project type (commercial,
embedded etc.) used to identify likely risk factors/defect rates; and
project life cycle (client-server, standard-small etc.) used to relate
activities to effort. These inputs can all be tailored.

• Environment Tab: The user inputs the factors that infl uence the
effi ciency of the software development team such as analyst and
programmer capability; applications, virtual machine and language
experience; execution time and main storage constraints; virtual
machine and requirements volatility; computer turn around time;
database size; product complexity and reliability; required reuse
and security; and use of modern programming practices and tools.
Each of these can be in fi ve levels rated from very low to very high
with the defi nitions and numerical values included on the tab view.

• Constraints Tab: The user can use the constraints tab to assign
numerical values to eight constraint areas relevant to the project.
These areas are time-cost trade-off, review time, requirements
analysis, minimum review time, Beta testing, cushion, overlap and
risk tolerance. The estimated percentages can be assigned by the
user or left as a default value.

Product Description:
Cost Xpert is an automated tool that supports software costing, scheduling and risk
assessment using SLOC, function points, GUI Metrics, top down and bottoms up
methodologies. Cost Xpert consists of fi ve main notebook tabs: Project, Volume,
Environment, Constraints and Results. Outputs include an input data summary, software
development cycle task report, risk report, labor report by labor category, maintenance
report, and documentation deliverables report.

19B-9

January 2012

Appendix 19B: Software Pricing

19B.4.2 Cost Xpert Processing
The model performs all computations based on “equivalent SLOC”. The core
costing equations involve a relatively simple equation of the form “Effort =
* volume .” and are organization specifi c coeffi cients and can be adjusted
by the user during calibration. The exact equations used in the model are not
defi ned in the User’s Guide. The environmental factors used in Cost Xpert are
very similar to those used in the REVIC model.

19B.4.3 Cost Xpert Outputs
The model’s primary outputs are development effort and schedule, including
the optimal effort and schedule for the program(s) being analyzed. Cost
Xpert provides staffi ng profi les by labor category/month. Cost Xpert also
has a risk assessment with which the user can perform numerous size, effort,
and schedule risk analyses, as well as identifying likely risks to the project
and a sensitivity analysis. Maintenance and document deliverable reports
summarize those areas. The schedule report is exportable to MS Project.
There is a risk assessment tool available (Risk Xpert) that supports both risk
assessment and contingency planning/tracking to mitigate risks in a formal,
optimized manner.

19B.4.4 Cost Xpert Calibration
Cost Xpert contains a minimum amount of detail for calibrating the model.
Basically, it is done by comparing actual historical data to model predicted
results, then adjusting the coeffi cients and . Further calibration is made by
tailoring the inputs in the Project and Constraints tabs.

19B.4.5 Cost Xpert Life Cycle Considerations
The model predicts both the maintenance effort for each year of the project
and the projected maintenance adjusted for infl ation. The quantity of software
defect estimates and support calls are also estimated based on the original
project input data.

19B.5 FORESIGHT MODEL
ForeSight is a parametric tool for forecasting time, effort, and cost of non-
military software projects; the projects can be new developments, modifi cations,
integration of off-the-shelf applications, maintenance programs, or software
upgrades of any type. ForeSight is a tool for all project management tasks
related to effort and time forecasting--budgeting, staffi ng plans, estimate to
complete, performance measurement etc. This model has a one button OLE
interface to MS Project.

ForeSight is a contemporary adaptation of the PRICE S model to address
non-military software projects only. It was based upon the same database

19B-10

January 2012

Appendix 19B: Software Pricing

used to construct PRICE S. ForeSight, however, was tuned to the commercial
and non-military government (AIS) records of the PRICE S database and has
some different equations. In addition, several databases unique to ForeSight
development were incorporated, among them: the National Software Data
Information Repository (NSDIR), the ISBSG (International Software
Benchmarking Standards Group) database, and a proprietary database of
Object Oriented (OO) applications.

19B.5.1 ForeSight Inputs
One of the primary inputs for the ForeSight model is program size. Size is
usually expressed in SLOC that can be input directly by the user or computed
using a sizing model included in the ForeSight package. The Sizer model
estimates size by SLOC, by using predictive object points (POPs) or by
converting a function point count to SLOC. Other key inputs include the
following:

• Application: The seven basic functional categories of the
inherent software instruction diffi culty are: mathematical, string
manipulation, data storage and retrieval, on-line, real-time,
interactive, and operating system. The result of this classifi cation
procedure is summarized in a single value called Application.

• Productivity factor: A parameter that can be calibrated which
relates the software program to the organizational capabilities,
experience, and individual talents of the team that will perform the
software development. This factor should be based upon historical
data.

• Complexity: Complexity describes the effects of additional factors
affecting the development environment that are directly related
to schedule or time, such as a development tools, personnel skills,
and potential requirements growth.

Product Description:
ForeSight is a software tool for forecasting time, effort, and cost of non-military software
projects; the projects can be new developments, modifi cations, integration of off-the-
shelf applications, maintenance programs, or software upgrades. Project sizing metrics
include: SLOC, function points and predictive object points (POPs). ForeSight produces
estimates that include: size, schedules, staffi ng, labor effort, cost, and quality. This model
has a one-button interface to MS Project for fi le creation, importing and updating. It tracks
milestones and benchmarks the project against past history. ForeSight supports waterfall,
spiral, evolutionary and incremental development projects. It allows Risk Analysis and will
generate an Estimate To Complete (ETC).

19B-11

January 2012

Appendix 19B: Software Pricing

• Platform: Platform relates the cost of software development to
the requirements of the environment in which the software must
operate. It is a measure of the transportability, reliability, testing,
and documentation required by the contract.

• Utilization: The proportion of the processor capability used,
relative to its available speed and memory capacity, is represented
by the variable called Utilization.

• Level of New Design and Code: Percentage of the end product that
will require new design and/or coding effort. This input considers
the degree of modifi cation or reuse for the software.

There are other inputs for internal and external integration effort, schedule
start and end dates, programming language used, and economic factors.

19B.5.2 ForeSight Processing
ForeSight uses a common core equation that relates schedule and effort to
software product size and software production capability. The form of the
core equation is:

M = A * SizeB;

where M is either effort or time and A and B are functions of software production
capability and/or product type. ForeSight adjusts the size measure (in units of
lines of code, function points, or object points) for software functionality and
amount of reuse. Other areas around the core equation that infl uence project
performance are treated by the forecasting engine. The exact equations are
proprietary and are not included in the user’s manual.

19B.5.2 ForeSight Outputs
Results are provided in a number of fi x formatted forms, including text and
graphic reports, screens, Microsoft Project inputs, and a ForeSight project fi le
in Microsoft Access format. ForeSight produces estimates that include: size,
schedules, staffi ng, labor effort, cost, and quality.

19B.5.3 ForeSight Calibration
The HELP menu provides no indication of how to calibrate this model
other than by changing the individual attribute ratings or through updating
“historical elements”. Historical elements are software systems, subsystems
or elements that have been completed and for which cost, schedule or effort
information is available. A historical element may be integrated into a new
system/subsystem as COTS or as an analogy for forecasting purposes. “In
either case ForeSight will calibrate the technical and cost information to
establish a unique performance measure for each historical element.”

19B-12

January 2012

Appendix 19B: Software Pricing

19B.5.4 ForeSight Life Cycle Consideration
The ForeSight Life Cycle Model, included in the ForeSight package, is a
detailed model which computes software operation and support costs.
The Profi le menu generates a graphical display that is used to control the
distribution of effort expended during the support period. The total effort
is a combination of four distributions: Defect Detection, Defect Repair,
Enhancement, and Adaptation. All four may be viewed on a single Profi le
screen at once. Associated with every element of an ForeSight Estimation
Breakdown Structure is a table of data that enables tailoring of the type listed
above. Supplemental data controls the level of tasks and resources estimated
for elements.

19B.6 KNOWLEDGEPLAN MODEL (REPLACES CHECKPOINT)
The KnowledgePLAN model algorithms are derived from over 6,700 projects.
The model is applicable to all types of programs and has its knowledge base
updated annually.

19B.6.1 KnowledgePLAN Inputs
Like the other models discussed, the primary input for KnowledgePLAN is
size. However, KnowledgePLAN is different than most other models in that
it works primarily in sizing by analogy or with function points instead of
SLOC. The model will accept SLOC, but converts SLOC to function points
using conversion factors in the model. In addition to size, the model requires
certain inputs for a quick (or basic) estimate, and additional parameters for a
detailed estimate. The inputs for each option are now summarized.

• Quick Estimate Inputs: The following inputs are required for both
quick and detailed estimates:

Project description information.

 Project nature: Whether it is a new program, an enhancement,
 a conversion, reengineering, maintenance, etc.

Product Description:
KnowledgePLAN is a tool that guides the user through the development of a software
project estimate and plan using a large knowledge base that is updated annually. Knowl-
edgePLAN combines knowledge-based estimation, “what if” analysis and scheduling func-
tionality within one tool. Work Breakdown Structures can be integrated into a Project (MPX
compatible) management tool and allows the PM tool to vary schedules, task assignments
and resource allocations. Allows project sizing by SLOC, Function Point and Analogy.
KnowledgePLAN creates and refi nes detailed project plans for a bi-directional interface
with Microsoft Project or other enterprise project management system. The tool will track
milestones, schedules, resources, actual work effort and defects found.

19B-13

January 2012

Appendix 19B: Software Pricing

 Project scope: Whether the program is a stand-alone program,
 program within a system, a disposable prototype, etc.

Project Topology: Whether the project is being implemented
 as a stand-alone platform, local or wide area network, a client
 server, or a distributed network.

Project class: Who is the customer/end-user of the software
 project such as contract, commercial, government, IT/MIS and
 is it a single site, multi-site or network.

Project type: What kind of software is the deliverable; non-
 procedural application or system with subtypes such as off-
 line processing, interactive graphical user interface (GUI), etc.

Software Products: For sizing by analogy, which system/
 application is similar in size (small, medium, large) with simi -
 lar applications such as business, generic, billing, etc.

• Detailed Estimate Inputs: KnowledgePLAN has over 100 factors,
or project attributes, that can be used to fi ne-tune the model’s
estimates. These are categorized into personnel, technology,
process, environmental, product and maintenance which are briefl y
described. Each factor is rated essentially from “very low” to “very
high” in fi ve possible steps with “3” being average or typical.
Lower ratings generally result in increased effort and schedule. If
the user has no information for a factor, he or she can leave it as
“not answered”. The model keeps track of how many attributes
have been answered (i.e., 25%) and this is included in the tool’s risk
assessment.

 Personnel attributes: These attributes are divided into four
 subsets: project management, development experience, user
 personnel experience, and quality personnel experience.
 Examples of project management attributes are organization
 structure, team morale, and project management experience.

 Technology attributes: These attributes address the impact
of Life Cycle software tools and hardware platforms on the
development environment. Examples of attributes are design
automation environment, project documentation library,
development hardware stability, and terminal response time.

 Process attributes: These attributes address the life cycle
 methodology used on the project that affects development and

19B-14

January 2012

Appendix 19B: Software Pricing

 quality assurance. Examples are analysis, life cycle, quality,
 testing, and documentation.

Environment attributes: These attributes address the
importance of organization and offi ce factors.

Product factors: The Products Attributes dialog box allows the
user to characterize any constraints that may affect the ability to
fulfi ll user requirements such as security or performance. The
Products Attributes dialog box has two tabs: Requirements and
Architecture.

19B.6.2 KnowledgePLAN Processing
The specifi c algorithms used in this model are not defi ned in the
KnowledgePLAN User’s Guide. The Guide does state that the project estimates
are regulated by: algorithms from the project’s assigned knowledge base, by
task category inclusion rules, by adjustment rules from the estimation engine,
by task/category properties and by task estimation fl ags. The starting point
is the knowledge base assigned to the project by the model based primarily on
the answers to the quick estimate inputs. Knowledge bases contain the rules
and estimates for the base estimate. The algorithms are tuned to the default
settings of the project classifi cation variables and can be viewed/modifi ed by
the user.

19B.6.3 KnowledgePLAN Output
The model provides the user with several different outputs. Like most other
models, KnowledgePLAN provides an estimate of schedule, staffi ng, and effort
in dollars or person-months in table or Gantt chart views. KnowledgePLAN
provides a risk analysis of various input options selected; along with estimates
for size, defects, test and reliability, maintenance, documentation, and various
productivity parameters.

19B.6.4 KnowledgePLAN Calibration
The user can calibrate KnowledgePLAN by overriding the model’s default
values for inputs or quality and productivity rates. This can either be done
directly or, more commonly, by creating templates based on historical data.
Templates include any values for which the user wants to override the
model’s defaults, and are requested as part of a basic estimate. Templates
pass along the domain and knowledge base that the new project will use. The
KnowledgePLAN User’s Guide provides information about template creation.

19B.6.5 KnowledgePLAN Life Cycle Considerations
KnowledgePLAN includes more than fi fteen “maintenance” inputs in the
“detailed estimate inputs”. Examples are maintenance personnel experience,

19B-15

January 2012

Appendix 19B: Software Pricing

amount of replacement and restructure planning, number of sites, and
customer support. The user can also specify the amount of code to be added
or deleted annually. The model estimates the annual cost of maintenance and
enhancements for a time period specifi ed by the user, up to 20 years.

19B.7 PRICE-S MODEL

Martin Marietta Price Systems (initially RCA Price, then GE Price) originally
developed this model as one of a family of models for hardware and software
cost estimation. Developed in 1977, PRICE-S was the fi rst commercially
available detailed parametric software cost model to be extensively marketed
and used. The PRICE-S model is proprietary; not all equations are published,
although the PRICE-S Reference Manual describes the basic parametric
relationships. The model is applicable to all types of software projects. It
considers all eight phases of the software development cycle, plus system
concept and operational testing phases.

19B.7.1 PRICE-S Inputs
One of the primary inputs for the PRICE-S model is program size. Size is
usually expressed in SLOC that can be input directly by the user or computed
using a sizing model included in the PRICE-S package. The Sizer model
estimates size by SLOC, by using predictive object points (POPs) or by
converting a function point count to SLOC. Other key inputs include the
following:

• Application. The seven basic functional categories of the
inherent software instruction diffi culty are: mathematical, string

Product Description:
The PRICE Software Model Suite (PRICE-S) is a parametric cost and scheduling model
that consists of three models to estimate costs and schedules for the development,
operation and support of computer software. The PRICE-S Acquisition Model is an
application of PRICE empirical modeling methods to the problem of forecasting software
cost and schedule. The PRICE-S Sizing Model utilizes three analytical estimating tools
to estimate the size of the software being developed. The fi rst tool is used to estimate
SLOC based on inputs for qualitative descriptors, quantitative descriptors and sizing
factors. The second tool is a Function Point sizer that converts the function point count
to SLOC. The third tool is an Object Metric, Predictive Object Points (POPs) for sizing
object oriented development projects. The PRICE-S Life Cycle Cost Model is used to
develop early costing of the maintenance and support phase for a software project. The
Acquisition Model provides the development cost and design parameters to the Life Cycle
Cost Model, with the user inputting the support activity and support period. Support cost
estimates include Corrective, Enhancement and Growth categories. ForeSight is a new,
less expensive software cost model that is compatible with PRICE-S except for military/
mission critical software development projects.

19B-16

January 2012

Appendix 19B: Software Pricing

manipulation, data storage and retrieval, on-line, real-time,
interactive, and operating system. The result of this classifi cation
procedure is summarized in a single value called Application.

• Productivity factor. A calibratible parameter that relates the
software program to the organizational capabilities, experience,
and individual talents of the team that will perform the software
development. This factor should be based upon historical data.

• Complexity. Complexity describes the effects of additional factors
affecting the development environment that are directly related to
schedule or time, such as a development tools, personnel skills, and
potential requirements growth.

• Platform. Platform relates the cost of software development to
the requirements of the environment in which the software must
operate. It is a measure of the transportability, reliability, testing,
and documentation required by the contract.

• Utilization. The proportion of the processor capability used,
relative to its available speed and memory capacity, is represented
by the variable called Utilization.

• Level of New Design and Code. Percentage of the end product that
will require new design and/or coding effort. This input considers
the degree of modifi cation or reuse for the software.

There are other inputs for internal and external integration effort, schedule
start and end dates, programming language used, and economic factors.

19B.7.2 PRICE-S Processing
Parametric relationships which combine management perception and
historical results are used to relate new software projects to costs and
schedules that are typical of the work to be accomplished. Although much
material concerning the PRICE-S algorithms has been published, some
details concerning the algorithms are proprietary and are not available to
the user. It is known that PRICE-S computes a “weight” of software based
on the product of instructions and application inputs, which are comparable
to hardware volume and density respectively. The productivity factor and
complexity inputs are very sensitive parameters that affect effort and schedule
respectively. Platform is known to be an exponential input; hence, it can be
very sensitive. Other input parameters are used to adjust the “weight” of
software for a specifi c program. A 1988 paper published by PRICE Systems,
entitled The Central Equations of the PRICE Software Cost Model, describes many

19B-17

January 2012

Appendix 19B: Software Pricing

internal algorithms in detail, although algorithms may have been modifi ed
since that time.

19B.7.3 PRICE-S Outputs
PRICE-S computes an estimate in person-months which may be converted
to cost in dollars or other currency units. The model estimates schedule by
milestones, with a staffi ng profi le. In addition to cost and schedule estimates,
PRICE-S provides automatic sensitivity and schedule effect analyses, together
with monthly cost and progress summaries to support budgeting, risk
analysis, and project tracking.

19B.7.4 PRICE-S Calibration
Organizational performance history serves as input to a calibration mode that
fi ts the model to user specifi c environments that characterize productivity
within a line of business. The PRICE-S model can be run in the ECIRP (PRICE
backwards) mode to calibrate selected parameters. The most common
calibration is that of the productivity factor, which, according to the PRICE-S
Reference Manual, tends to remain constant for a given organization. It is also
possible to calibrate platform, application, and selected internal parameters.

19B.7.5 PRICE-S Life Cycle Consideration
The PRICE-S Life Cycle Model, included in the PRICE-S package, is a detailed
model which computes software operation and support costs. The Life Cycle
Model is designed to be used in conjunction with the Acquisition Model that
provides the development costs and design parameters to the Life Cycle Model.
The primary inputs are support descriptors such as number of installations,
expected growth, and quality and enhancement levels; three calibratible
support productivity factors; and separate size and expected growth. The
Life Cycle Model outputs cost in three support categories: maintenance,
enhancements, modifi cations and growth. It also outputs a predicted number
of delivered defects in the program to be supported.

19B.8 SOFTCOST-OBJECT-ORIENTED (OO) MODEL
The SoftCost Object-Oriented (SoftCost-OO) model, developed and marketed
by Resources Calculations, Inc. (RCI), evolved from the SoftCost-Ada model
developed by Don Reifer which was, in turn, based on the published work of
Dr. Robert Tausworthe of the Jet Propulsion Laboratory. In addition to Ada,
SoftCost-OO has calibration fi les for the C++ language and generic object-
oriented paradigms. The model is markedly different from the SoftCost-R
model, which more closely paralleled COCOMO. The SoftCost-OO model
has a database of over 240 Ada, 50 C++, and 120 object-oriented projects.
The model is one of a family of models marketed by RCI, which includes
SoftCost-R (a software cost estimation tool for data processing, scientifi c and

19B-18

January 2012

Appendix 19B: Software Pricing

real-time applications), Asset-R (a function point tool to estimate software
size) and SSM (an analogy software sizing model).

SoftCost-OO includes a work breakdown structure (WBS) fi le editor which
allows use of preloaded WBS fi les, modifi cation of pre-loaded fi les, or
development of a new WBS from scratch. The WBS fi le editor also checks for
correct allocation of duration and effort percentages for each WBS item, and
for an allowable set of predecessor activities in a network.

SoftCost-OO is applicable to all types of object-oriented programs and considers
all phases of the software development cycle. The model’s equations are
published in the SoftCost-OO User’s Guide; however, the computer program
used to solve these equations and related analyses is proprietary to RCI.

19B.8.1 SoftCost-OO Inputs
A key input of SoftCost-OO is size, which can be input either as SLOC or
function points. If SLOC is used, the minimum, most likely, and maximum
SLOC are input for new, reused, and modifi ed components. In addition to
size, SOFTCOST-OO has twenty-eight other inputs, or attributes, in four
categories. Some of the categories and inputs are similar to those used in
COCOMO and REVIC. Most of these inputs require a rating ranging from
“1” to “6” with “3” being “nominal” or “no-effect”; however, a few inputs
such as number of organizations allow other numerical values. A help screen

Product Description:
SoftCost-OO is an object oriented and reuse software estimation tool. This tool is a
PC-based parametric cost model consisting of a screen editor, estimation model, and
outputs. Phases covered include software requirements through software testing,
including hardware and software integration testing. There are three databases, Ada,
C++, and Object-Oriented. SoftCost-OO contains fi ve submodels, sizing, estimating, risk,
allocation (effort/labor categories), and life cycle (maintenance). The sizing submodel
calculates equivalent source lines of code for projects developed in Ada, C++, or a mix
of languages. Function points can also be used. The estimating submodel develops an
effort and schedule estimate for a project using parametric and size information provided
by the user. The risk submodel allows the user to play “what-if” gaming scenarios by
varying effort, schedule, and size. The allocation submodel takes the effort and schedule
from the risk submodel and allocates it to the tasks that comprise the Work Breakdown
Structure (WBS) for the project. This submodel also allocates effort by labor category
across life cycle phases. The life cycle submodel calculates maintenance effort and cost
for the system based on the effort selected in the risk submodel. This submodel contains
a load-balancing feature that allows a user to assess the impact of fi xed workforce on
maintenance. Three other models marketed by RCI are required for non-object oriented
and non-reuse software development estimates: SoftCost-R is used for estimating real
time software in the traditional development mode, SSM is an analogy software sizing tool
and Asset-R is a function point sizing tool.

19B-19

January 2012

Appendix 19B: Software Pricing

for each input assists the user in selecting proper values. The inputs in each
category are as follows:

• Product attributes: The attributes in this category are application
type (avionics, command and control, simulation etc.), number
of organizations, system architecture (centralized, distributed,
multiple processors etc.), organizational interface complexity, staff
and computer resources availability, and security requirements.

• Process attributes: The attributes in this category include use of
modern development methods, use of tools, tool and environment
stability, degree of standardization, scope of support, and use of
peer reviews.

• Product attributes: The attributes in this category include a
technology usage factor, product complexity, requirements
volatility, degrees of real-time and optimization, reuse costs and
benefi ts, and database size.

• Personnel attributes: The attributes in this category include analyst
capability; application, language, methodology, and environment
experience; team capability, and number of OO projects completed.

SoftCost-OO also has a “Quick Run” capability where, if a similar project has
previously been estimated, it can be recalled and only size is required as an
input. Once size has been entered, the project can be analyzed like any other
project.

19B.8.2 SoftCost-OO Processing

SoftCost-OO is one of the few models for which the mathematical algorithms
are completely described in the Reference Manual. The SoftCost-OO
equations are:

• PM = A0 * Al * A2 * A3 * A4 * (SLOC)C

• M = B0 * B1 * B2 * (PM)D

PM is the effort in person-months; M is schedule in months; A0 and B0 are
calibration constants which depend on the application type input; Al is an
architectural constant which depends on the system architecture input; A4
and B2 are scaling factors which vary with size, degree of reuse, and number
of OO projects completed; A3 is the product of all inputs not used for other
equation factors; and C and D are exponents which vary with number of OO
projects completed. The SoftCost-Ada User’s Manual illustrates values assigned
to ratings for all model inputs to help the user understand the effect of each on

19B-20

January 2012

Appendix 19B: Software Pricing

effort and schedule. The model also has several other equations, as described
in the SoftCost-OO Reference Manual.

19B.8.3 SoftCost-OO Outputs
SoftCost-OO computes a nominal estimate in person-months of effort and
schedule for each project, along with a productivity value and an estimate of
average number of personnel required. The model then allows for investigation
of the sensitivity of each of the input variables and exploration of alternatives
to the nominal estimate or changes in schedule, effort, or confi dence level.
The model also provides schedule outputs for Gantt and PERT charts.

19B.8.4 SoftCost-OO Calibration
The model contains three calibration fi les; an Ada fi le, a C++ fi le, and a generic
OO fi le. The user must select one of these as an input for a model estimate.
The user can change these fi les to refl ect his or her environment, but this must
be done carefully. RCI plans to develop an on-line calibration capability to
work with SoftCost-OO as a separate product.

19B.8.5 SoftCost-OO Life Cycle Considerations
SoftCost-OO contains a separate life cycle model for support costs. In addition
to SoftCost-OO developmental inputs, life cycle inputs include annual change
traffi c, length of the support period, a sustaining engineering factor, and
economic factors. There is also a provision for entering and reporting on
various staff levels, fi xed support costs, and fi xed work force levels.

19B.9 SOFTWARE LIFE CYCLE MODEL (SLIM)
This model was developed by Quantitative Software Management (QSM)
Corporation, and is based on the work of Lawrence Putnam. SLIM is
proprietary; however, much of the theory behind the model is published in
previous works by Putnam, and his book Measures of Excellence. A key feature
of SLIM is the use of the Rayleigh-Norden curve, illustrated in Figure 19D-
1, to allocate resources during a project. The time integral of the Rayleigh-
Norden curve results in the “software equation”, which is as follows: (Note:
TD is development time.)

 Size = (Productivity Factor) * (Effort)1/3 * TD
4/3

This software equation is fundamental to SLIM and the entire QSM approach.

SLIM is applicable to all types of projects, although it was originally developed
for large projects. It computes costs for all software development phases.
The “main build” phase initially computed by SLIM includes the detailed
design through system test phases, but the model has the option to include
the “requirements and design” phase, including software requirements and

19B-21

January 2012

Appendix 19B: Software Pricing

preliminary design, and a “feasibility study” phase to encompass system
requirements and design.

19B.9.1 SLIM Input
The signifi cant user inputs to the model are as follows:

• Size: Size is one of the two key user inputs to SLIM. Size is usually
input as SLOC. SLIM does allow the user to input function points
which are converted to SLOC using a ratio, or “gearing factor”,
that may be specifi ed by the user. The user may also input the
programming language used and, as in REVIC, inputs the least,
most likely, and greatest size for each program to be analyzed.

• Productivity Index (PI): The other key input, PI, is a calibratible
parameter that can either be input directly by the user or is
computed by the model based on a multitude of additional inputs.
The PI is a number that can vary from 1 to 40; higher values result
in lower cost and schedule. It is also a very sensitive parameter;
a change in one integer value can result in a twenty-fi ve to thirty
percent change in cost. SLIM uses fractions of PIs for fi ne-tuning.
The inputs for computing or adjusting PI are as follows:

 Application type: This is the key determinant of PI when the
user asks the model to compute it. Some of the nine application
types are micro-code, avionics, command and control,
telecommunications, and business. If a program is of multiple
application types, the user can specify percentages of each type.

 Tooling and methods: This set of inputs includes factors such
as hardware familiarity, use of various types of automated tools,
and robustness and adherence to a development standard. For
this set of additional inputs and for the next two sets, the user
rates each factor from 1 to 10, with 5 usually being average.

Product Description:
SLIM is a software cost, schedule, risk and reliability estimation tool for planning, control
and risk analysis of developing software systems. The SLIM model is a combination of a
program evaluation and review technique (PERT) algorithm, linear programming, Monte
Carlo simulation and sensitivity profi ling techniques. It uses expert system methodology and
can be customized to a specifi c organization through the use of historic data. Associated
software tools that can be procured from QSM to augment the capabilities of SLIM are
SLIM Control (controls Software projects by employing advanced statistical process control
techniques for monthly “health checks” using the SEI recommended “core metrics”) and
size planner.

19B-22

January 2012

Appendix 19B: Software Pricing

 Technical diffi culty: This set of inputs includes the amount
of new algorithms and logic, platform stability, and various
complexity factors.

 Personnel profi le: This set of inputs includes management
effectiveness, skill level, experience, degree of communication,
and morale factors such as motivation and cohesiveness.

• Other Inputs: The user can specify other factors that affect cost and
schedule, including the following:

 Phase adjustments: The user can specify the staffi ng profi les to
be used during each phase of development, and can customize
development phases.

 Importance: The user can state the relative importance of cost,
schedule, and quality for the program being estimated.

 Constraints: The user can specify maximum cost or effort,
maximum schedule, minimum and maximum staffi ng levels,
and minimum mean-time-to-defect (MTTD) for the fi nal
product. The user can also specify the desired probability of
meeting each constraint. The model will attempt to meet all
constraints or determine an “optimal” solution that has the
greatest chance of meeting all specifi ed constraints.

19B.9.2 SLIM Processing
Although the actual equations for SLIM are proprietary, it is known that SLIM
relies heavily on the Rayleigh-Norden curve and its inherent assumptions.
The original curve assumed that the maximum manpower was allocated
at TD, the development time, and that there was a 60:40 ratio of support
costs to development costs. SLIM adjusts this curve as required to meet
project-peculiar inputs, especially for smaller programs, and user-specifi ed
constraints.

The shape of the curve is determined by three key parameters within the model:
size, PI, and the manpower buildup index (MBI). The MBI is a number that
varies between -3 and 10. It refl ects the rate at which personnel are added to
a project. Higher ratings indicate faster buildup rates, and result in shorter
schedules but higher costs. The Rayleigh curve, as shown in Figure 19D-1,
is shifted upward and to the left as MBI increases. Lower size or higher PI
values result in both lower costs and shorter schedules; the Rayleigh curve is
shifted downward and to the left. Although MBI is a signifi cant parameter,
the user cannot input MBI directly. Instead, it is determined primarily by the
user-specifi ed constraints.

19B-23

January 2012

Appendix 19B: Software Pricing

19B.9.3 SLIM Outputs
The primary output of SLIM is an optimal solution to meet the constraints
specifi ed by the user. In the absence of constraints, the model will compute
a “minimum time” solution for which the user can reduce cost by relaxing
the schedule. The “staffi ng view” of the model shows a staffi ng profi le along
with the model’s computed cost, effort, schedule, peak staffi ng required,
and MTTD. The staffi ng view also shows the probabilities of meeting each
of the specifi ed constraints. The model also has a “ballpark view” and a
“consistency view” where time, effort, MTTD, average staffi ng, and PI are
compared with similar projects in the SLIM database. SLIM has numerous
report options for risk analysis, defect profi les, and other areas of interest to
the user. The model has a very impressive feature that allows the user to vary
a certain parameter on a chart with the mouse and see the effect on the other
parameters, including risk.

19B.9.4 SLIM Calibration
The PI for SLIM can (and should) be calibrated using historical data. The
model has on-line calibration capability for the user to calibrate a PI from
historical projects. All that is required are program size, development time
in months, person man-months of effort, and, if available, MTTD for each
historical project. PI is determined to the nearest tenth (e.g., 8.3) in calibration.

19B.9.5 SLIM Life Cycle Considerations
SLIM has an optional “maintenance” phase output which uses SLIM
development inputs to compute man-months, schedule, and staffi ng profi les.
The user can not specify any support-peculiar inputs except the shape of
the curve (Rayleigh, stair step, exponential, straight line, or level load). The
model computes all support outputs based on extrapolation of the staffi ng
curve for the time after software development is completed using the user-
specifi ed curve shape, and the time to achieve either 99% or 99.9% reliability
as specifi ed by the user.

19B.10 SYSTEM EVALUATION AND ESTIMATION OF RESOURCES
SOFTWARE ESTIMATING MODEL (SEER-SEM)
One of a family of models marketed by Galorath Associates, SEER-SEM is
based on the work of Randall Jensen in his paper “An Improved Macro-Level
Software Development Resource Estimation Model.” It uses the Rayleigh-
Norden curve (described in SLIM) to allocate resources during a software
project and to estimate cost and schedule. SEER-SEM is applicable to all types
of programs, and is applicable to all phases of the software development cycle
except system requirements and design. The model is proprietary.

19B-24

January 2012

Appendix 19B: Software Pricing

19B.10.1 SEER-SEM INPUTS
The inputs for this model can be divided into three categories: size,
knowledge base inputs, and input parameters. Each category of inputs is
now summarized.

• Size: The user can input size using one of three measures: SLOC,
traditional function points, or Galorath function points. SEER
converts function points to SLOC before generating an estimate.
All code is further categorized as “new”, “preexists designed for
reuse”, or “preexists not designed for reuse”. For pre-existing
software, the user must specify the amount of code deleted, and the
percentages of redesign, recoding, and retest required to modify
or reuse the program for the current application. The model uses
PERT; therefore, the user must input a “minimum”, “most likely”,
and “maximum” value for all size inputs.

• Knowledge Base Inputs: SEER-SEM contains a myriad of
knowledge bases for different types of software. The knowledge
bases assign default values to the input parameters described below
based on the type of software selected. The user must specify the
following six inputs to specify the knowledge base to be used by
the model.

 Platform: The operating environment of the program, such as
avionics, ground-based, or manned space.

 Application: The overall function of the software, such as radar,
command and control, mission planning, or testing.

 Acquisition method: The method in which the software is to be
acquired, such as development, modifi cation, or re-engineering.

 Development method: The method used for development,
such as waterfall development, evolutionary development,
object oriented, prototype or incremental development.

 Development Standard: The Standard used in development
and degree of tailoring to describe documentation, quality, and
test standards such as ISO, 2167A etc.

 Class: This input is primarily for user-defi ned knowledge bases.

• Input Parameters: SEER-SEM contains more than thirty input
parameters with which the user can refi ne an estimate. As in
COCOMO, the values normally range from “very low” to “very
high”. As in size, the user must specify a least, greatest, and most

19B-25

January 2012

Appendix 19B: Software Pricing

likely value for each input. A user can use the default values
generated by the chosen knowledge base if no further information
is available. The primary categories of input parameters and a brief
description of each follows.

 Complexity: Assesses the diffi culty of the software.

 Personnel capability and experience: The parameters in this
category, similar to the “personnel attributes” of COCOMO,
measure the caliber of personnel used on the project.

 Development support environment: Measures the usage
of modern practices and tools, availability of resources, and
frequency of changes to the environment.

 Product development requirements: Measures the stringency
of quality, documentation, and test requirements, as well as the
frequency of changes in requirements.

 Reusability requirements: Measures the degree of reuse needed
for future programs and the percentage of software affected by
reusability requirements.

 Development environment complexity: Measures the
complexity of the language, application, and host development
system used.

 Target environment: Measures special constraints for the target
environment such as memory, special displays, and security
(which is the most sensitive input parameter in the model).

 Other input parameters: There are also special inputs for
schedule constraints, labor rates, integration requirements,
personnel costs, metrics, and software support.

19B.10.2 SEER-SEM Processing
Although the model is proprietary, some of the equations of the SEERSEM
model can be found in the SEER-SEM User’s Manual and in articles published
by Randall Jensen. SEER-SEM computes an effective technology rating
(ETR) based on several input parameters. The model apparently uses the
Rayleigh-Norden curve to compute the required effort. SEER-SEM also
contains windows where the user can compare two projects, examine several
risk analysis graphs, and see what effect a changed input parameter will have
on the overall development cost and schedule.

19B-26

January 2012

Appendix 19B: Software Pricing

19B.10.3 SEER-SEM Outputs
 SEER-SEM allows the user to select a variety of output reports and charts.
A “quick estimate” provides a snapshot of size effort, schedule, and ETR
anytime during the estimating process. Optional outputs include a basic
estimate, staffi ng by month, cost by month, cost by activity, person-months
by activity, and software metrics including delivered defects.

19B.10.4 SEER-SEM Calibration
The model may be calibrated by computing an ETR from past programs, by
computing cost and schedule multipliers from past programs, or both. The
cost and schedule multipliers are linear multipliers with a nominal value
of one (which would have no effect). The ETR, multipliers, or both can be
incorporated into a custom knowledge base for future programs of the type
calibrated. One limitation of the ETR is that the user cannot input it directly
as a model input; it must be adjusted by changing other input parameters.
The cost and schedule multipliers, however, can be input directly. In addition
to ETRs, knowledge bases and parameter setting may be calibrated.

19B.10.5 SEER-SEM Life Cycle Considerations
SEER-SEM contains an optional “maintenance” output report which provides
annual costs and person-months for each year of a user-specifi ed schedule in
four categories: corrective, adaptive, perfective, and enhancements. The user
can specify the support time period desired along with several other support-
unique parameters. These include annual change rate, number of support
sites, expected program growth, and differences between development and
support personnel and environment, and degree of rigor (level of support).

19B.11 OTHER MODELS
The models discussed above do not encompass the entire arena of software
parametric cost models; there are numerous other models available. For
example, there are several variants of COCOMO available in addition to
REVIC. Several companies have software cost models that are used solely
within the company which developed the model. New models and new
versions are likely to be available.

19C-1

January 2012

Appendix 19C: Software Pricing

Commercial Off-The-Shelf (COTS) Software

19C.1 INTRODUCTION
This appendix summarizes the special considerations related to incorporating
COTS (commercial off-the-shelf) software components into a system. These
considerations vary so much from standard software
development approaches that special versions of
software cost estimating models are being created
to deal with the peculiarities. If a COTS software
product is to be used as a stand-alone item, then
some subsections such as those considerations related to “glue code” do not
apply. For a COTS software product that will be integrated into a system,
all the sections of this appendix apply. The majority of this introduction
is extended from the model rationale used by the University of Southern
California (USC), Center for Software Engineering (under the direction of Dr.
Boehm) for the COTS version of COCOMO.

One source of pre-existing software is commercial vendors who supply self-
contained off-the-shelf components that can be plugged into a larger software
system to provide capability that would otherwise have to be custom-built.
The two primary distinguishing characteristics of COTS software are 1) that its
source code is not available to the application developer (software developer
that will incorporate a COTS component into a larger system), and 2) that its
evolution is not under the control of the application developer.

The rationale for building COTS based systems is that development time is
reduced by taking advantage of existing, market proven, vendor supported
products, thereby reducing overall system development costs. In the case of
using such components as databases and operating systems, this is almost
certainly true. However, there are little data available concerning the relative
costs of using the component-based approach. Due to a of the lack of access
to product source code and a lack of control over product evolution, there is a
trade-off that results using the COTS approach. New software development
time can indeed be reduced; however, the cost of software component
integration generally increases. Moreover, if integrating COTS components,
there will be additional system costs to negotiate, manage, and track licenses
to ensure uninterrupted operation of the system. Moreover, using COTS
software also brings with it a host of unique risks quite different from those
associated with software developed in-house.

The true cost of integrating a COTS software component into a larger system
includes the traditional costs associated with new software development
such as the cost of requirements defi nition, design, code, test, and software
maintenance. In addition, the cost of integration includes: the cost of

A stand alone item
does not need interfaces
with other software
components

19C-2

January 2012

Appendix 19C: Software Pricing

licensing and redistribution rights; royalties; effort needed to understand the
COTS software; pre-integration assessment and evaluation; post-integration
certifi cation of compliance with mission critical or safety critical requirements;
indemnifi cation against faults or damage caused by vendor supplied
components; and costs incurred due to incompatibilities with other needed
software and/or hardware.

The following sections explain the system development model phases,
cost estimation model status, cost estimation/pricing equations, testing/
supportability/risk considerations, and licensing schemes for COTS software.

19C.2 COTS SOFTWARE FIVE PANEL MODEL
This model was obtained from the Software Engineering Institute (SEI) at
Carnegie Mellon University, who have authored a number of Special Reports
and hosted Workshops devoted to COTS software.

19C.2.1 COTS Market Phase
The COTS Market phase deals with the market survey and analysis activities
that determine the viable candidates for a particular component, from both a
business and a technical perspective. Discussing the many aspects regarding
a market analysis is outside the scope of this appendix.

19C.2.2 COTS Qualify Phase
The Qualify phase activities investigate the hidden interfaces and other
characteristics and features of the candidate products. Per SEI in their article
“Component-Based Software Development/COTS Integration,” component
qualifi cation is a process of determining “fi tness for use” of previously-
developed components that are being applied in a new system context.
Qualifi cation of a component can also extend to include qualifi cation of the
development process used to create and maintain it (for example, ensuring
algorithms have been validated, and that rigorous code inspections have
taken place).

Continuing with the SEI article, there are two aspects of component
qualifi cation: discovery and evaluation. For discovery, the properties of a
component are identifi ed. Such priorities include component functionality
(what services are provided) and other aspects of a component’s interface
(such as the use of standards.) These properties also include quality aspects
that are more diffi cult to isolate, such as component reliability, predictability,
and usability. In some circumstances, it is also reasonable to discover “non-
technical” component properties, such as the vendor’s market share, past
business performance, and process maturity of the component developer’s
organization. Discovery is a diffi cult and ill-defi ned process, with much of

19C-3

January 2012

Appendix 19C: Software Pricing

the needed information being diffi cult to quantify and, in some cases, diffi cult
to obtain.

The most diffi cult problem in the Qualify phase is to determine the
characteristics of the available COTS products so that a product which best
meets the requirements may be selected. The result of this discovery process
is to reveal the necessary information to make a selection and identify possible
sources of confl ict and overlap, so that the component can be effectively
assembled and evolved. The following excerpt from a Crosstalk article
describes the selection process.

“Experience shows that the selection process for one major product
can require three to six months of calendar time, multiple engineers
and programmers, access to sophisticated suites of hardware and
software environments, and will likely entail the purchase of vendor-
provided training classes.”
 March 1998 STSC Crosstalk

The rationale behind this time and expense are summarized by Richard D.
Stutzke in his paper, “Cost Factors for COTS Integration.” Typically the
COTS capabilities which are of interest to the designer are the completeness
of the functions provided, the COTS product’s architecture, and the
maturity and expected life of the product. The product’s architecture is
particularly important since COTS products often make assumptions about
the environment in which they will operate. The product’s architecture
dependencies also affect the partitioning of the components of the COTS
product and their dependencies. These dependencies can have signifi cant
cost impacts when the various components are integrated.

Dr. Stutzke states that during the evaluation process, the analyst must build
a mental model which relates the general and specifi c knowledge for both the
system being built and the COTS product being considered for inclusion into
that system. He referred to three models that the analyst must construct to
understand a software program:

• Structure (“top-down hierarchy of elements)
• Control fl ow (“program”)
• Data fl ow (“situation”)

A key point concerning these models is that knowledgeable people are
essential to correctly evaluate COTS components expeditiously.

19C.2.3 COTS Adapt Phase
Because individual components are written to meet different requirements,

19C-4

January 2012

Appendix 19C: Software Pricing

and are based on differing assumptions about their context, components
often must be adapted when used in a new system. A March 1998 article in
STSC Crosstalk on COTS states that COTS software does not require coding
but does require integration with other components. As a result, it starts the
life cycle as a partially developed component. The design, construction, and
integration and test development stages must be recast to accommodate early
COTS software integration and testing as well as to develop “Glue Code”
(interface software, confi guration fi les, scripts, utilities, and data fi les) which
is required to make the COTS software deliver its intended functionality.

Referring again to the SEI article, components must be adapted based on rules
that ensure confl icts among components are minimized. The degree to which
a component’s internal structure is accessible suggests different approaches
to adaptation:

• White Box. Access to source code allows a component to be
signifi cantly rewritten to operate with other components.

• Grey Box. Source code of a component is not modifi ed but the
component provides its own extension language or application
programming interface (API).

• Black Box. Only a binary executable form of the component is
available and there is no extension language or API.

Each of these adaptation approaches has its own positives and negatives;
however, White box approaches, because they modify source code, can result
in serious maintenance and evolution concerns in the long term. Wrapping,
bridging, and mediating (included as part of the “Glue Code”) are specifi c
programming techniques used to adapt Grey- and Black-box components.

19C.2.4 COTS Assembly Phase
The Assembly phase is the integration of the adapted components into a
software architectural infrastructure. Components must be integrated through
some well-defi ned infrastructure that provides the binding that forms a system
from the disparate components. This infrastructure supports component
assembly and coordination, and differentiates architectural assembly from ad
hoc “glue”. Referring again to the March 1998 STSC Crosstalk article, waiting
until late in the development process to test and integrate COTS products,
particularly those that are complex, will not give adequate time to master
all their intricacies and complexities. COTS product testing and integration
activities must be interwoven into more of the development process stages.

Extended from Dr. Stutzke’s paper, Table 19C-1 summarizes two types of
potential problems that may occur during the Assembly phase. First, it is very

19C-5

January 2012

Appendix 19C: Software Pricing

diffi cult to determine exactly how hard it will be to tailor and integrate the
COTS product into the new system. As indicated in the table, the steps are fi rst
to obtain a detailed, understanding of the component, then the component
must be modifi ed and tested. In some cases the product must be documented
as well.

Table 19C-1. Managing Potential Assembly Phase Problems

The second potential problem is that new versions of the COTS products
are often released during the integration process. This can affect the cost of
development, therefore some sort of strategy is needed to manage this. The
likelihood of new versions increases if the project lasts longer that one year.

The particular process used by the development team can signifi cantly affect
the cost of integrating COTS components. The three important process areas
are installing and integrating the component initially, installing new versions
of the components which become available during the integration process,
and tracking and controlling the baselines.

19C.2.5 COTS Update Phase
The Update phase acknowledges that new versions of components will replace
older versions; in some cases, components may be replaced by different
components with similar behavior and interfaces. These replacement activities
may require that glue code be rewritten, and they suggest the advantage of
well-defi ned component interfaces that reduce the extensive testing otherwise
needed to ensure that the operation of unchanged components is not adversely
affected.

Per the SEI article, component-based systems may seem relatively easy to
evolve and upgrade since components are the unit of change. To repair an
error, an updated component is swapped for its defective equivalent, treating
components as plug-replaceable units. Similarly, when additional functionality
is required, it is embodied in a new component that is added to the system.
This is a highly simplistic (and optimistic) view of system evolution however.

19C-6

January 2012

Appendix 19C: Software Pricing

The new component will never be identical to its predecessor and must be
thoroughly tested, both in isolation and in combination with the rest of the
system. As a result, replacement of one component with another is often a
time-consuming and arduous task. Wrappers must typically be rewritten,
and side-effects from changes must be found and assessed.

Dr. Stutzke concluded that the “volatility” of COTS products is a source of
signifi cant uncertainty and risk, increasing in magnitude as the length of the
system’s planned service life increases. A COTS product is volatile in two
ways: features and price. COTS products are market-driven and evolve
rapidly in response to consumer and competitive pressures. The vendor adds
(and sometimes deletes) features based on many factors. Regarding pricing,
maintenance pricing is the most volatile (assuming the initial purchase occurs
shortly after the evaluation is completed.)

Changes in maintenance price are primarily of interest for estimating the
operating costs of the deployed system. Typically, vendors encourage the
user to discontinue use of a product they want to retire by increasing the
annual maintenance fees (to cover the reduced number of active users.)
The may also offer attractive price reductions on the purchase price of new,
replacement products. The obsolescence of product features and/or changes
in maintenance price may cause signifi cant redesign and refurbishment of
the deployed system long before its useful life is over. Of course, these costs
impact the lifecycle costs of the system.

19C.3 COTS COST ESTIMATION MODEL STATUS
The USC’s Center for Software Engineering under the direction of Dr Boehm
is in the process of developing a version of COCOMO tailored for the unique
requirements of estimating COTS software. This model is called COCOTS
(COnstructive COTS). COCOTS is considered experimental and evolving. The
latest information on this model can be obtained at website http://sunset.usc.
edu/research/COCOTS/modeldesc.html. The contents of this section were
extended from the information obtained from the COCOTS web site.
COCOTS’ goal is the development of a comprehensive COTS integration
cost modeling tool. The approach taken was to fi rst examine a wide variety
of sources in an attempt to identify the most signifi cant factors driving COTS
 integration costs, and then to develop a mathematical form for such a model.

19C.3.1 COCOTS Model
The current model provides insight into the most important factors that
should be considered when estimating the cost of integrating COTS
components, regardless of the specifi c tool or methodology used to perform
that estimation. “The model represents a prototype implementation of the

19C-7

January 2012

Appendix 19C: Software Pricing

fi rst of four submodels being proposed for COCOTS, namely, the glue code
submodel. The model is not yet mature enough for the estimates it provides
to be used with a high level of confi dence. However, the cost parameters
contained within the model and the criteria used to rate those parameters as
described in the user guide certainly offer much insight into the questions a
software cost estimator should be considering when working on a system to
be built with COTS components.”

The USC COTS integration cost model version 1.0 takes the following form:

Table 19C-2. Defi nition of Symbols

USC suggests the following procedures when attempting to use its model
for a COTS integration cost estimation exercise:

1. Estimate the amount of glue code that is expected to be needed to
integrate a set of COTS products into a software application. Only
the integration or glue code linking the COTS component to the
larger application should be included in the estimate, not the code
internal to the COTS component itself.

2. Estimate the percentage of glue code that will be lost due to breakage
during the integration effort. This will be a function of the number

SIZE = KSLOC (1.0 + BRAK/100)
13

1i
iEM*SIZE*APM

COST = (PM)*($$/PM)

19C-8

January 2012

Appendix 19C: Software Pricing

of COTS packages being integrated into the new system overall, the
average number of updated product releases expected per COTS
package over the life of the system development, and the average
interface breakage per product release. Breakage refers to COTS
integration code that must be reworked as a result of a change
in system requirements. Breakage also includes integration code
required when a new release by the vendor of a COTS product
which necessitates that the newer version of the product be installed
before system delivery. Breakage does not refer to code that must
be reworked due to bugs introduced by the programmer, or due
to defects in design. The Breakage percentage is best estimated by
acquiring knowledge of two things: 1) the vendor’s past history
regarding releases of the COTS product in question or of similar
products that the vendor markets, and 2) the customer’s past history
regarding demanding changes in requirements after development
and COTS product integration has begun.

3. Determine the effective size of the glue code development effort by
feeding the estimates derived in steps 1 and 2 into the formula for
SIZE.

4. Assign each effort multiplier a rating on the given scale from very
low to very high, which best characterizes the unique conditions
pertaining to the COTS integration effort.

5. Determine the overall estimated effort for this integration task by
feeding the estimate for SIZE and the rated effort multipliers into
the formula for Person-months (PM).

6. Determine the estimated cost by multiplying estimated PM by the
estimated average labor rate ($$/PM).

This completes the COTS integration cost estimation procedure.

19C.3.2 Other COTS Cost Models
There are other COTS Cost Models that are not addressed here.

19C.4 COTS COST ESTIMATION/PRICING EQUATIONS
Estimating the cost of a software system that includes COTS components
requires the inclusion of more cost areas than typical software development
efforts. Figure 19C-2 provides a general illustration of the standard software
development costs without COTS. Figure 19C-3 shows the four additional
cost areas when COTS components are integrated to form a complete system.

19C-9

January 2012

Appendix 19C: Software Pricing

 Figure 19C-2. SW Cost Estimates without COTS

 Figure 19C-3. SW Cost Estimates with COTS in System

19C-10

January 2012

Appendix 19C: Software Pricing

19C.4.1 Software System with COTS Components Costs
The total cost of a software system that includes COTS components could be
estimated by adding together the following:

Table 19C-3 Total Cost of Software System

Estimating the cost of obtaining the COTS software for each COTS component
would take the following form:

Estimating the cost of obtaining the COTS Hardware would take the following
form:

i = number of processors, storage, workstation, communications

Unit costs vary by quantity, platform, and time. If all the items are not procured
at the same time, there will be a need to consider time-phasing of acquisition,
implementation, operations & maintenance. The biggest challenge will be the
complex, dynamic COTS price structures.

19C.5 IMPACT OF COTS ON SYSTEM TESTING
This section is included in order that the analyst may consider these two
questions when pricing a proposal or developing a cost estimate. Does the
proposal/estimate cover these tests? Is some testing missing or is there
too much testing? An important advantage of COTS software is reduced
delivery time. This is realized through the elimination of the research and
development phase of the acquisition cycle and subsequent development test

 rt]}Cost[suppo + licenses] .Cost[maint {= Maint.] & Cost[Op.
 + ll]}Cost[insta + ing]Cost[train {= mentation]Cost[imple

+ }platforms]#features,#licenses,Cost[# {=
 ses]Cost[licen+ office] sitionCost[acqui = SW COTS

 M]i}&Cost[O
 imentation]Cost[imple istion]i{Cost[acqu office] sitionCost[acqui HW COTS

19C-11

January 2012

Appendix 19C: Software Pricing

and evaluation. In general, testing is not required when the software will be
used and maintained by similarly skilled people in the same environment as
that for which it was designed and existing data (contractor or other sources)
provides reasonable answers to performance and supportability issues. If
COTS software components are being integrated into a larger system, then
system integration testing and selected component testing would be required.
Operational testing is strongly recommended if operational or support
environments differ from the contractor’s. Further, preselection testing in
the Qualify phase should be conducted to minimize technical, operating and
support risk.

For stand-alone COTS in a commercial-like (same-environment) application,
no testing should be required if the application is the same as commercial use
of the item. If there is any doubt, an analyst should acquire and qualify a test
sample prior to selection. After delivery of a successful item, any defi ciencies
that appear should be covered by the vendor’s commercial warranty.

For COTS embedded in a larger system, feasibility testing to qualify a test
sample should be done prior to selection and integration into the system.
Development Test and Evaluation (DT&E) of the complete system is required.
Hardware and software integration tests should be conducted as well as user
testing (typically, operational test and evaluation (OT&E)) at the system level.
COTS defi ciencies that appear during or after system-level testing should be
covered by the vendor’s commercial warranty. Special considerations for
specifi c testing areas are as follows:

Development Testing. Development testing should be conducted at the
system level but not at the COTS assembly level since COTS is already
developed. If an item does not meet performance standards/requirements,
select other COTS or go for a non-COTS design effort.

Operational Testing. Selection of COTS items does not automatically mean
there will be no need for operational testing. However, operational testing
for COTS components (or stand-alone COTS) should be limited or waived if
market investigation data and, as applicable, pre-selection qualifi cation testing
will satisfy the requirements. Operational testing, as previously mentioned,
should be conducted for a system with integrated COTS components.

Supportability Evaluation. The impact of COTS on system supportability
probably requires testing that should include reliability testing, organizational
level maintainability testing, human factors engineering tests, standardization
measurements and safety analysis.

Compatibility Testing. Follow-on compatibility testing in fi elded systems
could be conducted for all signifi cant hardware or software revisions to a

19C-12

January 2012

Appendix 19C: Software Pricing

COTS item. This testing should verify that the interfaces are not violated,
and be completed before the Government accepts the change. Reviewing the
vendor’s service bulletins and engineering change orders (ECOs) can help
identify which changes would require testing.

Quality Assurance Provisions. A quality assurance provision should be
specifi ed for each system-level functional and physical requirement in the
contract. However, quality control of individual COTS items should be
covered by the vendor’s commercial warranties.

19C.6 COTS SUPPORT
The rapidly changing market and technology of COTS items means that it
will have a limited useful life cycle. Support requirements should be defi ned
before SIR release. Support requirements should also include an up-front
defi nition of the system support requirements to the item level, a lifetime
support strategy and appropriate contract language to implement the support
strategy. Acquisition contracts should include support such as maintenance,
support equipment and training for the total expected life cycle as well as pre-
planned product improvements or when replacements are needed.

A market analysis should be performed while the requirements document is
still in draft form. If COTS items are to be embedded in a larger system by a
prime contractor, be sure that the prime contractor acquires all the required
information from the proposed vendors.

The preferred method of support for COTS products is through local
acquisition and locally-acquired contractor service. Any decision for life-cycle
contractor logistics support must be accompanied by adequate planning. In
the absence of a formal contractor support agreement, plan for an appropriate
level of organic management and support for COTS assets.

When determining the support for a commercial item, it is recommended
to evaluate the original contractor’s support, alternate vendors’ support,
and Government support with regards to impact on competition, opera-
tional requirements, total support costs, and support availability.

Three major areas of concern in COTS support are confi guration management
and data; maintenance policy; and sustainability.

19C.6.1 Confi guration Management Data
Except under very unusual circumstances, it is not wise to demand full
design disclosure engineering data for system support. Even if the vendor
was agreeable to selling the data, it would quickly be obsolete because the
government would not have design control. Contractors can unilaterally

19C-13

January 2012

Appendix 19C: Software Pricing

change the design as necessary to suit their customer or market requirements.
COTS designs should be documented to the system interfaces level.

For COTS software, the government should acquire and maintain appropriate
licensing and subscription services (vendor fi eld change orders and software
releases) throughout the life of the system. If the Government secures change
authority, it must clearly defi ne the limits of what the Government can
change, and restrict alterations in any way that would void the licensing or
subscription service. Independent software changes by the Government, or a
Government freeze to an earlier COTS software version, will turn COTS into
a unique product.

19C.6.2 Maintenance Policy
Employment of COTS will usually lock the government into two-level
maintenance: organizational and depot. The most desirable support concept
is contract repair, preferably via competition. A good strategy is to price
support options while the original buy is still in competition. The riskiest
course is an in-house depot repair, which should be selected only under
exceptional conditions because it will have to be a specialized operation if
even possible at all. The vendor might refuse to sell the data and tools to
develop a capability.

19C.6.3 Sustainability
Because of the design control the Government has had over in-house
developmental software, many systems have been maintained and upgraded
to serve multiples of their original design life. Market pressures usually send
commercial designs more quickly into obsolescence not so easily dealt with. It
is not uncommon for this to occur within fi ve years, which means that retrofi t
funding should be routinely projected approximately at the time of original
system fi elding. There should be cost estimates for maintenance and eventual
replacement of COTS software. Licensing and subscription service represent
a signifi cant annual cost, and replacement cost will also be considerable.

19C.7 LICENSING SCHEMES
Referring again to Dr. Stutzke’s article, “Cost Factors for COTS Integration,”
the license terms for the COTS products can affect the cost of the overall system
and even affect the choice of the architecture. Dr. Stutzke adapted a memo by
Gibson and Mankofsky which grouped their license types into the six types
shown in Table 19C-4. The names used were defi ned to be as descriptive as
possible since there is no standard terminology used by vendors to refer to
these types of licenses. This makes it extremely diffi cult to compare the costs
of products offered by different vendors.

19C-14

January 2012

Appendix 19C: Software Pricing

Tab1e 19C-4. Types of COTS Software Licenses

The license costs are primarily of interest in making the “buy or build”
decision during the Product Design phase or the Proposal phase (since this
is when the price must be determined). The cost of developing the products
must be traded against the cost of purchasing the necessary number of copies
and integrating them into the system. In-house developed products have a
signifi cant non-recurring engineering cost which is paid once. All subsequent
copies of the component may; however, be used for essentially no cost for the
life of the system, regardless of how many copies of the product are produced.
For a COTS product, the non-recurring engineering cost is absorbed by the
vendor but the buyer (developer of the new system) must pay a license fee for
each copy of the component which is used. Complex trades-off analysis must
be made between functionality, cost, schedule, risk, etc., involving not just the
development and production cost but also the operating costs of the deployed
system when performing a make (develop) or buy (COTS) decision.

19C-15

January 2012

Appendix 19C: Software Pricing

Other factors may affect the cost of a COTS product. First, discounts may
be available if multiple copies are purchased (volume discounts). Second,
reduced prices may be offered if several related products are purchased
together (“bundling”). Third, sometimes the fi rst year of maintenance is
provided free with the initial purchase of the product. Fourth, if the product
is utilized during the development process, it is possible that an additional
warranty must be purchased prior to delivery of the system to the customer.
Fifth, there may be liability costs in the event COTS components cause failure
in the system during operations. Such costs could cover damage to equipment,
injures to personnel and loss of service. Last, there may be refurbishment
costs associated with the loss of critical functions as the product evolves in
response to market pressures. The functions needed may be removed from
later versions of the product.

Multiple types of licenses must be mixed to obtain the necessary number of
copies of a product. Sometimes a full license is purchased to obtain a complete
set of documentation and several other “right to use” licenses are purchased to
allow copies of the “full” product to be used on other platforms. Such mixing
and matching can have signifi cant impacts on the total cost of a system.

19C.8 SUMMARY
The utilization of COTS software components/products is intended to reduce
the cost and schedule of software development programs. If the COTS
component is a stand-alone product, it probably will. However, for integrating
COTS components into a larger system, there are many factors that must be
considered. This appendix has outlined the primary considerations and the
basic cost equations that apply to COTS software cost estimating and pricing.

19D-1

January 2012

Appendix 19D: Software Pricing

Works Cited

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

Boehm, Barry W. and Christopher M. Abts. “COTS/NDI Software Integration
Cost estimation & USC-CSE COTS Integration Cost Calculator v2.0 User
Guide.” Los Angeles, CA: University of Southern California, September 1997.

Boehm, Barry W., et al. “COCOMO 2.0 Program.” Presentation handouts.
ISPA 1994 Conference, Munich, Germany, 1994.

Boehm, Barry W., et al. “The COCOMO 2.0 Software Cost Estimation Model.”
Abstract. International Society of Parametric Analysts, 1995.

Boehm, Barry W., et al. “An Overview of the COCOMO 2.0 Software Cost
Model.” Abstract. Software Technology Conference, 1995.

Carney, David J. and John Foreman. “Component-Based Software
Development/COTS Integration.” Software Technology Review Search
Results (http://www.sei.cmu.edu/str/descriptions/cbsd_body.html):
Carnegie Mellon University, 1998.

Fox, Greg, et al. “A Software Development Process for COTS-Based
Information System Infrastucture: Part 1.” Crosstalk, The Journal of Defense
Software Engineering Vol 11, No. 3, March 1998.

Galorath Associates. SEER-SEM User’s Manual. Los Angeles, CA: Galorath
Associates, September 1994.

Galorath Associates. SEER-SEM User’s Manual Release 4.5. Updated. El
Segundo, CA: Galorath Associates, September, 1996.

Galorath Associates. SEER-SSM User’s Guide. Marina del Rey, CA: Galorath
Associates, 1991.

Jensen, Randall W. “An Improved Macro-Level Software Development
Resource Estimation Model.” Proceedings of the Fourteenth Asilomar
Conference on Circuits, Systems, and Computers 1981.

Jones, Capers. “Programming Languages Table.” Burlington, MA: Software
Productivity Research, March 1995.

Jones, Capers. “What Are Function Points.” Burlington, MA: Software
Productivity Research, March, 1995.

Jones, Capers. Applied Software Measurement. New York: McGraw-Hill,
1991.

19D-2

January 2012

Appendix 19D: Software Pricing

Jones, Capers. Programming Productivity. New York: McGraw-Hill, 1986.

Musa, John D. et. Al. Software Reliability: Measurement, Prediction,
Application. New York: McGraw-Hill, 1987.

PRICE Systems. The Central Equations of the PRICE Software Cost Model.
Moorestown, NJ: PRICE Systems, 1988.

PRICE Systems. PRICE-S Reference Manual. 3d ed. Moorestown, NJ: Martin-
Marietta, October 1993.

Putnam, Lawrence H., and Ware Myers. Measures of Excellence. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

Quantitative Software Management Corporation. SLIM 3.0 For Windows
User’s Manual. McLean, VA: Quantitative Software Management, 1993.

Reifer, Donald J. SoftCost-Ada User’s Manual, Version 2.2. Torrance, CA,
Reifer Consultants, Inc., 1991.

Reifer, Donald J. SoftCost-R User’s Manual Version 8.0. Torrance, CA: Reifer
Consultants, Inc., 1989.

Resource Calculations, Inc. SoftCost-OO User’s Guide Version 3.1. Denver,
CO: Resource Calculations, Inc., 1994.

Roetzheim, William H., and Reyna A. Beasley. “Best Practice in Software
Project Cost and Schedule Estimating.” Cost Xpert User’s Manual. Jamul,
CA: Marotz, Inc., 1997.

Software Engineering Institute. Checklists and Criteria for Evaluating the
Cost and Schedule Estimating Capabilities of Software Organizations, CMU/
SEI-95-SR-005. Pittsburgh, PA: Carnegie Mellon Univ., January 1995.

Software Engineering Institute. Workshop on COTS-Based Systems, CMU/
SEI-97-SR-019. Pittsburgh, PA: Carnegie Mellon Univ., November 1997.

Software Productivity Research, Inc. KnowledgePLAN User’s Guide Version
2.0. Burlington, MA: Software Productivity Research, April 1997.

Stutzke, Richard D. “Cost Factors for COTS Integration”, Proceedings of the
10th International COCOMO User’s Conference. October 1995.

United States. U. S. Air Force Material Command “White Paper #2 on Methods
for Evaluating Similar Items.” Dayton, OH: AFMC, January 1996.

United States. U. S. Naval Center for Cost Analysis. Software Development
Estimating Handbook. Arlington, VA: NCCA, February 1998.

19D-3

January 2012

Appendix 19D: Software Pricing

United States. National Aeronautics and Space Administration. Parametric
Cost Estimating Handbook. Springfi eld, VA: NTIS, Fall 1995.

United States. National Aeronautics and Space Administration. Handbook
for Software Cost Estimation. Pasadena, CA: JPL, May 2003.

United States. Software Engineering Laboratory. Cost and Schedule
Estimation Study Report (SEL-93-002). Greenbelt, MD: SEL, November 1993.

